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I. INTRODUCTION

Over the past half century, agriculture in Sub-Saharan Africa
has failed to experience any significant productivity improve-
ments (Evenson and Gollin 2003). This is broadly viewed as a
central reason the region has not embarked on a path of sustained
economic growth and mass poverty is still widespread. Low use of
modern, but simple technologies, including fertilizers and hybrid
seeds, is often suggested as an explanation for why agricultural
productivity has remained stagnant, but why adoption rates are
so low still remains somewhat of a mystery (see reviews in Foster
and Rosenzweig 2010; Jack 2011, for example).

A number of promising and potentially interlinked explana-
tions have been put forward in recent literature, including missing
markets for risk and credit (Karlan et al. 2014), lack of knowledge
and behavioral constraints (Duflo, Kremer, and Robinson 2006,
2011), and uncertainty (Suri 2011). In this article, we investigate
a complementary explanation that takes its starting point in the
technology itself: the quality of the technology as provided in the
market. This investigation provides the first large-scale empirical
assessment of the prevalence of poor-quality technologies (fertil-
izer and hybrid seed) in local markets in Africa and its implica-
tions for economic returns to adoption. To this end, we combine
data from laboratory tests with data from researcher-managed
agricultural trials. We complement the objectively measured qual-
ity data with information on farmers’ beliefs about the quality of
inputs in the market and their beliefs about the expected yield
returns of using either authentic or market-based inputs.

We establish that low-quality inputs are rife in the local retail
markets we surveyed. Specifically, we find that 30% of nutrient is
missing in fertilizer, and hybrid maize seed is estimated to contain
less than 50% authentic seeds. Moreover, we document that such
low quality results in close to zero average rates of return in
our baseline specification. If authentic technologies replaced these
low-quality products, however, average returns for smallholder
farmers would be over 80%. Together these results suggest that
one reason smallholder farmers do not adopt fertilizer and hybrid
seed is that the technologies available in local markets are simply
of too low quality to be profitable.

We use our data to rationalize the results we document.
Specifically, the data show not only low average fertilizer quality
but substantial heterogeneity in quality, which is not correlated
with price. This suggests that farmers’ ability to infer quality may
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be severely limited, since we would otherwise expect prices to ad-
just (Shapiro 1982; Mailath and Samuelson 2001). To investigate
this further, we exploit data from our agricultural trials. The ex-
perimental data provide estimates of average yield conditional on
quality and an estimate of the whole density of yields for a given
quality. We use these data and calibrate a simple Bayesian learn-
ing model to show that farmers experimenting on small plots will
quickly be able to infer that the quality of fertilizer is low if the
level of dilution of the fertilizer is sufficiently high.1 Consistent
with this finding, we find few samples with very low quality in the
market place. However, for almost the full range of substandard
inputs we observe in the market, we estimate that most farm-
ers in the model, even after several periods of experimentation,
would not gather enough information to confidently conclude that
bad-quality products are sold, when that is in fact the case. On av-
erage, the Bayesian farmers’ willingness to pay for fertilizers with
market quality is also low, although there will be some farmers
who, after observing high yield from relatively low-quality inputs
in a small number of experiments, end up with a willingness to
pay equal to or above the average market price. This result can
help explain the low but positive average adoption rate we ob-
serve in the data. Our findings also help explain why we do not
observe sellers selling high-quality products at a premium price:
the pecuniary incentives to build up and maintain a high-quality
reputation, given the beliefs of the farmers we surveyed, simply
appear too weak. We argue, however, that by lifting some of the
constraints to adoption that have been highlighted in the recent
literature, one could, through the improved learning environment
that would likely follow, create stronger incentives for a high-
quality seller to enter the market.

The article is structured as follows. In Section II we briefly
describe the context. Section III describes the data. Section IV
presents the main findings on the quality of the technologies
available in the market. In Section V we estimate the returns

1. Our modeling setup is related to other work on technology adoption in agri-
culture. In Foster and Rosenzweig (1995) and Conley and Udry (2010), farmers
learn about the optimal level of fertilizers (with a fixed quality) to be applied.
Besley and Case (1994) and Munshi (2004) present models where farmers learn
about the expected yield when applying fertilizers (of a fixed quality). Hanna, Mul-
lainathan, and Schwartzstein (2014) examine a learning model in which farmers
do not pay attention to certain dimensions of the production function. In contrast,
the Bayesian farmer here learns about the quality of the technology itself.



1058 QUARTERLY JOURNAL OF ECONOMICS

to adoption, and in Section VI we present results on farmers’ be-
liefs about quality in the market and their expectation of yields
conditional on quality. In Section VII, we rationalize the observed
low-quality equilibrium by developing a parsimonious Bayesian
learning model and use data from the agricultural trials to quan-
tify farmers’ ability to learn, and their willingness to pay, from
small-scale experimentation. Section VIII concludes with a dis-
cussion of the implications of our findings.

II. CONTEXT

The agriculture sector in Uganda, as in most countries in
the region, is dominated by smallholder farmers, a majority of
which cultivate less than two hectares. Maize is the most widely
cultivated crop and is grown throughout the country, often on soil
with low fertility.2

Data on smallholder farmers’ technology use (fertilizer and
hybrid seeds) in Africa are sketchy. The World Development In-
dicators, using data collected by the Food and Agriculture Orga-
nization (FAO), report average fertilizer consumption (kilograms
per hectare of arable land) for a large set of Sub-Saharan African
countries. However, since large-scale commercial farms and agri-
cultural producers consume a large fraction of the total, these
averages typically do not provide an accurate measure of small-
holder farmers’ use.3

Nationally representative household surveys with a focus on
agriculture exist for some countries. The LSMS Integrated Sur-
veys on Agriculture program, for example, has collected panel
data for eight Sub-Saharan African countries, including Uganda.
Online Appendix Table A.1 extends and updates Sheahan and
Barrett’s (2014) estimates of overall national fertilizer and im-
proved seed use statistics using the latest rounds of LSMS data.
Based on data for 2012/2013, we estimate that 7% of cultivating
households in Uganda, and almost 1 in 10 households growing
maize, used some type of fertilizer in the last year. Twenty-two

2. Declining soil fertility has been highlighted as a key concern in Sub-Saharan
Africa, including Uganda (Sanchez 2002; Nkonya, Kaizzi, and Pender 2005).

3. For example, average fertilizer consumption in Mozambique was approx-
imately four times higher than in Uganda in 2013 (World Bank 2016), but only
3% of imported fertilizer was used for food crops, and only a fraction of this was
used by smallholder farmers. Fifty percent of the imported fertilizer was used by
a multinational tobacco producer (World Bank 2012).

file:qje.oxfordjournals.org
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percent of cultivating farmers report planting improved seeds on
at least one of their plots.4 There are large variations in input
use across Uganda’s four regions, with very low usage of fertilizer
and improved seed in the northern region, while 13% of cultivat-
ing maize-growing households report using fertilizers, and 27%
report using improved seeds, in the main maize-growing region.

Adoption rates are higher for fertilizers but more similar
for improved seeds in the other seven countries surveyed by the
LSMS (see Online Appendix Table A.1), with the share of house-
holds using some inorganic fertilizers varying from 15% (in Tan-
zania) to 78% (in Malawi), and the share of households using some
improved seeds varying from 15% (in Niger) to 49% (in Malawi).

Most Sub-Saharan African countries, as is the case for
Uganda, import fertilizers, but a significant fraction of the hy-
brid seeds in the market are produced domestically. In Uganda,
large commercial farms and agricultural producers source fertil-
izers directly through international sources, or through one of the
approximately 10 importers, many of whom also act as domes-
tic distributors or wholesalers, and buy hybrid seeds directly from
national seed companies or from importers linked to international
seed producers (IFDC 2014). There is also a larger set of whole-
salers/retailers in the market, which do not import inputs them-
selves, from which local agro-input retail shops typically source.

Ugandan supply costs mirror those documented for farmers
in Kenya and Tanzania, but Ugandan farmers face higher trans-
port costs due to longer distances and border-related constraints
(IFDC 2014). In addition, and unlike most countries on the conti-
nent, Uganda does not have a national fertilizer subsidy program,
which is probably one important explanation for the relatively low
average fertilizer use.5 Uganda differs from several other African
countries in that there is no state participation in import and
distribution of fertilizers and hybrid seeds.

In local retail stores, hybrid seeds and fertilizer are usually
sold in smaller packages which the retailer has repacked from
larger bags. Most fertilizers are sold under their generic name

4. Improved seeds are either open pollinated variety (OPV) seeds or hybrid
seeds.

5. Many African countries have a subsidy program for fertilizer, and some have
a program for hybrid seeds. There are large differences in how these programs
work and the extent of the subsidy across countries. The most generous program
is in Malawi, where participating farmers receive a subsidy up to 90% for both
fertilizers and seeds (IFDC 2013).

file:qje.oxfordjournals.org
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(urea, DAP, NKP, for example), and hybrid seeds (when in large
bags) typically are branded with names specifying the seed pro-
ducer and type of seed.

Concerns about poor-quality inputs in the agricultural sec-
tor are neither new nor specific to Uganda. In fact, addressing
poor-quality inputs through the strengthening of the regulatory
enforcement capacity and the capacity for quality assurance was
listed as one of the main policy recommendations in a recent
USAID-funded review of fertilizer markets in 12 Sub-Saharan
African countries (IFDC 2015).

Low-quality inputs could be due to a multitude of factors,
including adulteration, poor storage, and inappropriate handling
procedures. Moreover, quality deterioration could manifest at dif-
ferent points in the supply chain. There are news reports and anec-
dotal evidence from many African countries about adulteration of
both seeds, fertilizers, and other agro-inputs, such as pesticides,
at different parts of the supply chain, including the importation of
diluted inputs, the bulking out of fertilizer, or dyeing simple grain
to look like hybrid seeds by wholesalers. Although news reports
across the region have primarily focused on adulteration scandals
at the higher end of the supply chain, anecdotal evidence suggests
that adulteration also takes place at the retail level, where larger
bags are repacked into smaller ones. The repacking and the open-
air storage of larger bags in retail stores can lead to dilution of
key nutrients in fertilizer and lower the quality of hybrid seeds.

III. DATA AND MEASUREMENT

We investigate the quality of one of the most popular high-
yield variety of maize seed in the Ugandan market and a generic
nitrogen-based fertilizer (urea). Nitrogen has been shown to be the
main limiting nutritional component to maize growth in Uganda
(Kaizzi et al. 2012).

To measure the quality of the technologies in the market, we
combine data on the nitrogen content of fertilizer from retail shops
and experimental yield data from our own agricultural trials.

At 129 randomly sampled local retail shops in two of the main
maize-growing regions of Uganda, we purchased 369 samples of
urea fertilizer (“retail fertilizer”), and at 30 such shops we pur-
chased 30 samples of branded hybrid seed of the predetermined
type (“retail hybrid seed”), using a mystery shopper approach (see
Online Appendix for details). We also purchased urea and hy-
brid seed in bulk directly from one of the main wholesalers for

file:qje.oxfordjournals.org
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urea (“authentic fertilizer”) and the seed company producing the
branded seed (“authentic hybrid seed”). Finally, we purchased tra-
ditional farmer seed from a random sample of 80 small-scale maize
farmers living around the trading centers where hybrid seed was
purchased.

Each retail fertilizer sample was tested three times for the
content of nitrogen (N) using the Kjeldahl method (Anderson and
Ingram 1993) at the Kawanda Agricultural Research Institute
laboratory. We used the mean of these tests to determine the qual-
ity of a sample. Authentic urea should contain 46% nitrogen (%N)
and we confirmed this to be the case in our authentic sample.

Researcher-managed agricultural trials at five of the National
Agricultural Research Laboratories’ research stations across
Uganda were used to determine the yield responses of fertilizer
and estimate the quality of hybrid seed sold in retail markets. Au-
thentic urea was diluted by proportionately adding acid-washed
sand to get urea samples with 75% of stated N (approximately
34%N), 50% of stated N (approximately 23%N), and 25% of stated
N (approximately 11%N). Together with authentic urea (46%N)
and no urea, this yields five fertilizer treatments (N = 46%; N =
34%; N = 23%; N = 11%; N = 0%). We combined the five fertil-
izer treatments with the three seed treatments (authentic hybrid
seed, retail hybrid seed, and farmer seed) to yield 15 possible seed-
fertilizer quality combinations that were randomly assigned six
30 m2 plots each at each of the five experimental sites. In total,
each treatment combination was grown 30 times, and yield data
were collected from 450 plots.

The crop management and data collection protocol (see On-
line Appendix for details) followed the methodology outlined in
Kaizzi et al. (2012). All five sites were managed by the research
team, and the staff assigned to implement the trial protocol were
blinded to the treatment status of the plots. We planted two maize
seeds per hill with a spacing of 30 × 75 cm between hills, for a to-
tal of 105 hills per plot. We applied fertilizer at 108 kg per hectare
(which corresponds to the official recommendation of 50 kg N/ha
for authentic urea) in two splits: half at planting by broadcasting
and immediately incorporating into the soil and half later at tas-
selling top dress. In harvesting, we excluded the outer perimeter
of the plot, and we oven-dried the grains to correct for moisture.

Unlike the content quality of fertilizers, which can be tested
directly in a laboratory, we infer the quality of retail hybrid seeds
by focusing on their yield response. Intuitively, we assess the qual-
ity by assuming the following: if a bag of farmer seed yields X tons

file:qje.oxfordjournals.org
file:qje.oxfordjournals.org
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TABLE I
PERCENT NITROGEN (%N) IN RETAIL FERTILIZERS (UREA)

Mean Standard deviation Minimum Maximum Observations

%N 31.8 5.7 8.1 44.3 369

Notes. Summary statistics on the nitrogen content of the 369 fertilizer samples purchased in the covert
shopper exercise and analyzed in the laboratory.

of maize, a bag of authentic hybrid seed yields Y tons of maize and
a bag of retail hybrid seed yields αX + (1 − α)Y tons of maize, then
the bag of retail hybrid seed is of the same quality as a bag of au-
thentic hybrid seed that is diluted with α% farmer seed.

More formally, we first match the experimental yield data
for the three types of seed by site, block, and nitrogen content of
the fertilizer applied. Then we construct a new variable in each
strata, which is the weighted sum of the average maize yield
on the plots growing farmer seed in stratum s and the average
maize yield on the plots growing authentic hybrid seed in stratum
s: Yields,mix = αYields, f armer + (1 − α)Yields,authentic. Third, we cal-
culate the first four central moments of this new variable and of
the distribution of yields on plots growing retail hybrid seed—the
latter also averaged over the plots in each stratum. Finally, we
infer the most likely level of dilution by finding α that minimizes
the squared weighted difference between the simulated moments
and the data moments (see Online Appendix for details).

We complement the data on the quality of the technology with
household survey data, administered to 312 small-scale farmers
(farmers with farms of two hectares or less) residing around the
trading centers visited as part of the fertilizer quality study. The
household survey collected detailed data on farmers’ agricultural
practices, including input use and market interactions, and their
expectations about the quality of and yield return to fertilizers
(see Online Appendix for details).

IV. THE QUALITY OF THE TECHNOLOGY

As reported in Table I and illustrated in Figure I, on aver-
age, retail fertilizer contained 31% less nutrient than authentic
fertilizer or 31.8% N per kilogram (95% CI: 31.3–32.4). Defining
fertilizer dilution in sample j, dj , as dj = (46−%Nj )

46 , we find no fully
authentic fertilizers and less than 1% with a dilution level (dj)
less than 10%. We also observe very few highly diluted samples

file:qje.oxfordjournals.org
file:qje.oxfordjournals.org
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FIGURE I

The Distribution of Nitrogen Content in Fertilizer

The bars present the percentage of the 369 fertilizer samples with nitrogen
content equal to the values shown on the x-axis. The dashed vertical line indicates
the amount of nitrogen in authentic fertilizer. Data from the covert shopper survey,
with percent nitrogen (%N) tested in the lab.

(4% of the samples are diluted by more than 50%). In other words,
the large majority of samples (95%) have low to moderate dilution
levels (ranging from 10% to 50%).6

Figure II shows that although there was substantial variation
in quality across samples, prices were largely homogeneous.

Figure III links quality of the inputs to yields and shows
that shortfalls in quality reduce yields substantially. For example,
average yield is approximately 40% higher when using authentic
inputs (fertilizer and hybrid seeds) than when using inputs with
average retail quality.

Columns (1)–(3) in Table II report estimates of linear re-
gressions of yield on nitrogen content (%N) when planting

6. In a follow-up study (see Online Appendix for details) we show that dilution
of fertilizers is not specific to urea. A test of 126 samples of DAP (a multinutrient
fertilizer with nitrogen and phosphorus as the main nutrients) shows an average
dilution level of 25.9%, ranging from essentially 0% to 91% dilution.

file:qje.oxfordjournals.org
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FIGURE II

The Relationship between Price and Quality of Fertilizer

The dots show the combination of nitrogen content and price per kilogram of
urea for the 369 fertilizer samples. The solid line is based on a local polynomial
regression fitted to the data, and the gray shaded area represents the 95% confi-
dence interval. Data from the covert shopper survey with percent nitrogen (%N)
tested in the lab.

either farmer seed, retail hybrid seed, or authentic hybrid seed. A
reduction of nitrogen by 1 percentage point when planting tradi-
tional farmer seed leads to a significant yield loss of 49 kg per ha
(p < .001, t test). The loss due to poor quality is even higher when
planting retail hybrid seed (57 kg/ha, p < .001, t test) and the
highest when planting authentic hybrid seed (65 kg/ha, p < .001,
t test). For the fertilizer ranges considered here, the quality of the
technology is approximately linearly related to yield as graphi-
cally illustrated in Figure IV, using a nonparametric Fan local
regression method.7

7. It is well established that at higher levels of fertilizer application the
marginal yield return to (nitrogen-based) fertilizers is falling in the amount
of fertilizer applied (see for example Duflo, Kremer, and Robinson 2008;
Wortmann et al. 2011; Kaizzi et al. 2012). Here we consider the lower end of



LEMON TECHNOLOGIES AND ADOPTION 1065

FIGURE III

The Yield Return to Nitrogen Content in Fertilizer

The bars present maize yield in metric tons per hectare growing farmer seed
(left panel), retail hybrid seed (middle panel), and authentic hybrid seed (right
panel) after applying fertilizer with percent nitrogen (%N) given by 0%N, 11%N,
23%N, 34%N or 46%N. The error bars represent the 95% confidence interval. The
unit of observation is an experimental plot. Data from the experimental plots.

The results of the simulated moments estimation on retail
seed quality are presented in Table III. The simulated method of
moments estimate for α is 0.52 (95% CI: 0.30–0.74). From this we
conclude that the average quality of a bag of retail hybrid seed
is roughly the same as the quality of a bag mixed 50-50 with
farmer seed and authentic hybrid seed. Figure A.1, in the Online
Appendix, plots the cumulative distribution function (CDF) of re-
tail hybrid seeds and the distribution generated by mixing farmer
(52%) and authentic hybrid seeds (48%). The two curves lie almost
on top of each other and a Kolmogorov-Smirnov test confirms that
we cannot reject the null hypothesis that the two distributions are
equal (p-value = .90).

the relationship between applied nitrogen and yield for which there is little exper-
imental evidence.

file:qje.oxfordjournals.org
file:qje.oxfordjournals.org
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TABLE II
YIELD RETURN (METRIC TONS PER HECTARE) TO INCREASING QUALITY OF FERTILIZERS

Sample Experimental sites Farmer survey
Specification (1) (2) (3) (4)

%N 0.049∗∗∗ 0.057∗∗∗ 0.065∗∗∗
(0.004) (0.004) (0.005)

Expected %N 0.060∗∗
(0.024)

Constant 1.973∗∗∗ 2.268∗∗∗ 2.600∗∗∗ 0.82
(0.095) (0.087) (0.126) (0.56)

Observations 150 150 150 292
R-squared 0.52 0.65 0.52 0.02
Seeds Farmer Hybrid market Hybrid Farmer

authentic

Unit of analysis Plots Plots Plots Farmers

Notes. Values shown are coefficients from ordinary least squares regression. Each column represents a
different regression. The dependent variable in columns (1)–(3) is maize yield (metric tons per hectare) on
experimental plots. The independent variable is content of nitrogen (percent nitrogen; %N) in the fertilizer
applied to the experimental plot. The dependent variable in column (4) is expected maize yield (metric tons per
hectare) based on farmer survey data, and the independent variable is expected content of nitrogen (percent
nitrogen; %N) in the nearest retail shop. The p-value on the test of the null hypothesis that the coefficients in
specifications (1) and (2) [(1) and (3)] {(2) and (3)} are equal is 0.00 [0.02] {0.02}. Robust standard errors in
parentheses. ∗∗∗ 1% , ∗∗ 5% , ∗ 10% significance.

V. THE ECONOMIC RETURNS TO TECHNOLOGY

Having established that modern technologies available in lo-
cal retail markets are of poor and heterogeneous quality, we ex-
amine how quality affects the returns to adoption of retail hybrid
seed and retail fertilizer. The unit of observation for these calcu-
lations is a retail fertilizer sample.

The net return of a fertilizer sample j with nitrogen content
nj (%N) applied to retail hybrid seed is the difference between the
revenue from planting retail hybrid seed with retail fertilizer—
minus the direct and additional labor costs associated with the
inputs—and the revenue from planting traditional seed with no
fertilizer. The rate of return of adopting fertilizer and hybrid seed
is given by dividing the net return by the total cost of adoption. A
fertilizer sample is deemed profitable if its rate of return is greater
than 0.

Predicted yield for a given seed type and fertilizer quality
can be derived from Table II. Specifically, let sk denote seed type,
with s1 being farmer seed, s2 being retail hybrid seed, and s3 being
authentic hybrid seed. The predicted yield of a fertilizer sample



LEMON TECHNOLOGIES AND ADOPTION 1067

FIGURE IV

The Yield Return to Increasing Quality of Fertilizers

Nonparametric Fan regression of yield (metric tons per hectare) on percent ni-
trogen (%N) in fertilizers with authentic seeds. The unit of observation is an
experimental plot. Data from the experimental plots.

with nitrogen content nj %N using seed type sk is ŷ(nj, sk) = α̂k +
β̂k × nj where the subscript k on the estimated coefficients refers
to the column number in Table II.

The predicted net return (NR) of a fertilizer sample j with
nitrogen content nj %N, using retail hybrid seed, is calculated as

(1) NR(nj, s2) = pmŷ(nj, s2) − c f
j − cs − l f s − pmŷ(0, s1),

where pm denotes the market price of maize (per metric tons),
c f

j and cs are the costs of fertilizer and seed per hectare, and
l f s is the additional labor cost per hectare of land; that is, the
complementary input responses due to adoption of hybrid seeds
and fertilizers. pmŷ(nj, s2) is the predicted revenue per hectare of
land, using the results in Table II, column (2), to predict ŷ(nj, s2).
pmŷ(0, s1) is the revenue from traditional farming (no hybrid seed
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TABLE III
ESTIMATES OF QUALITY OF RETAIL HYBRID SEED BASED ON ITS YIELD

Retail hybrid Mix of authentic
seeds and farmer seeds

(1) (2)

α 0.52
(0.11)

Mean 3.563 3.566
Variance 1.172 1.264
Skewness –0.058 –0.069
Kurtosis 2.437 2.123
Criterion value 1.63

Notes. The unit of observation is a stratum, which contains the plots that are on the same site and block and
have fertilizer with the same level of nitrogen applied to them. Column (1) contains the first four moments
from the observed distribution of yields (metric tons per hectare) planting retail hybrid seed averaged at the
stratum level. Column (2) presents the estimate of α that minimizes the squared weighted distance between
the first four moments of this distribution and a simulated distribution of yields constructed by combining
the maize yield from plots growing farmer seed and the maize yield from plots growing authentic hybrid seed
in each stratum using the ratio α : 1 − α. The first four moments of this simulated distribution and the value
of the criterion at the estimated α are reported. Standard errors in parentheses are bootstrapped drawing
1,000 samples from the yield distribution.

or fertilizer), where the predicted yield is estimated from Table II,
column (1).

To calculate the predicted NR for authentic inputs, we re-
place nj with n = 46 and s2 with s3 in equation (1). Note that the
variation in NRs for inputs bought in local markets is driven by
variation in nitrogen content (nj), and thus expected yield, and
the cost of the fertilizer (c f

j ), whereas the variation in NRs for
authentic inputs is driven by differences in costs only.

To estimate the net returns we need data on the output price
(pm), input costs (c f

j , cs), and the cost of complementary labor
inputs (l f s).

The market price for maize per hectare (pm) is estimated from
the farmer survey where we collected information on the value
and amount of harvest sold in the last season. From this we de-
rive the price each farmer received. Since the reported output
price is strongly left-skewed, we used the median (UGX 500,000
or US$170 per metric tons) rather than the mean price.8

8. The market price for maize varies over the season (see, for example, Burke
2014). We did not collect data on the timing of the sale. However, due to inadequate
on-farm storage, most smallholders are forced to sell their produce at harvest
when prices are considerably lower. The estimated farm-gate price of UGX 500/kg
is consistent with other data. For example, the Famine Early Warning Systems
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TABLE IV
COMPLEMENTARY LABOR INPUTS

Family Family Expenses on Expenses on
labor (days) labor (days) hired labor hired labor

(1) (2) (3) (4)

Using fertilizer 32.4 10.2 197,566∗ 127,875∗
(24.5) (17.1) (101,310) (67,091)

Using improved seeds 1.52 –3.58 119,267∗∗∗ 103,220∗∗
(12.5) (11.6) (38,660) (40,231)

Using fertilizer & 30.7 96,708
improved seeds (28.7) (136,274)
Constant 105.7∗∗∗ 107.7∗∗∗ 70,288∗∗ 76,739∗

(9.6) (8.7) (32,922) (28,409)
p-value: F-test
(fertilizer, seeds)

0.37 0.69 0.02 0.04

Observations 312 312 310 310

Notes. Labor inputs conditional on technology adoption. Unit of observation is a household. OLS estimates
from a linear regression with location (trading center) fixed effects. Improved seeds are either open-pollinated
varieties (OPV) or hybrid seeds. Family labor is adult labor days per season, with working day normalized to
eight hours. Expenses on hired labor per hectare in Ugandan shillings per season, UGX (exchange rate was
approximately UGX 3,200 = US$1). F-test is the test of the null hypothesis ( βFertilizer = 0 and βSeed = 0).
Standard errors clustered by location (trading center) are in parentheses. ∗∗∗ 1% , ∗∗ 5% , ∗ 10% significance.

The price of each fertilizer sample and the average (and the
median) price for the hybrid seed were collected as part of the
covert shopper surveys. The costs of fertilizer and seed, c f

j and cs,
are then calculated assuming that inputs were applied using the
officially recommended amounts per hectare.

Estimating the complementary labor response due to adop-
tion is more problematic, as this choice is obviously endogenous.
As a reference, Beaman et al. (2013) use an experimental design
to estimate the change in complementary input use, including
family and hired labor, in response to free provision of fertilizers.
They do not observe any change in the amount of family labor
used but an increase in hired labor, and estimate that the total
complementary input expenses (excluding fertilizers) account for
26% of total input expenses (including the cost of fertilizers used)
for the treatment group receiving the full fertilizer treatment.

Table IV reports the results from regressing family labor and
expenses on hired labor on fertilizer and hybrid seed application,

Network report retail prices of maize in one of the main markets in the western
region of Uganda. At the time of harvest in 2013, the retail price was UGX 600/kg.
Since this is the retail price in one of the larger market centers, it provides an
upper bound of the average farm-gate price.
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using data from the smallholder farmers we surveyed. In our sam-
ple, 21% of the farmers use some type of fertilizer and half use
improved maize seeds (OPV or hybrid seeds).9 As in Beaman et al.
(2013), adoption of improved seeds and/or fertilizers is not asso-
ciated with a significant change in the amount of family labor
applied, but increased expenses on hired labor. Our nonexperi-
mental estimates, evaluated at the mean of fertilizer and hybrid
seed costs (c f

j , cs), column (3), imply that the complementary ex-
penses for hired labor (l f s) account for 32% of the total input
expenses (c f

j + cs + l f s) for farmers using fertilizers and improved
seeds. Although these estimates are close to Beaman et al.’s (2013)
experimental estimates, they are not causal estimates, so to check
the robustness of the findings we also impute rates of return as-
suming the complementary labor expenses are 25% or 50% less
than those reported in Table IV.

Low quality of inputs in the market reduces the economic
returns to adoption substantially. As Table V, Panel A, shows,
using retail fertilizer and retail hybrid seed yields very low returns
on average (mean r = 6.5% and median r = 10.8%). In contrast,
if authentic technologies were sold in local retail stores, the mean
and median rate of return would be close to 80%. Although 65.6%
of the fertilizer samples bought in local markets yield positive
returns, only 8.9% yield a return above 25% and none over 50%;
two thresholds that are likely to be more relevant given market
interest rates of 20–25%. If all samples had been authentic, 99%
of the samples would have yielded a return above 70%.10

In Table V, Panel B, we reestimate the returns assuming
the costs of the complementary inputs are 25% lower than in the
baseline scenario reported in Panel A, and in Panel C, we re-
port rates of return of adoption assuming the costs of the comple-

9. In the research-managed trials, urea was used both at planting and for top
dressing. It is not uncommon, however, for farmers using fertilizers to use different
types of fertilizers at planting and for top dressing. It is therefore more accurate to
use a more aggregate measure of fertilizer use, rather than adoption of a specific
type of fertilizer.

10. For single-nutrient fertilizers, like urea, given observed dilution levels,
the rates of return would initially tend to increase if farmers use more than the
recommended dosage. Overdosing, however, may be less beneficial when applying
a multinutrient fertilizer (as the relative magnitudes of the main nutrients matter
and diluted multinutrient fertilizer may not have the same relative amounts of
the main nutrients as authentic fertilizers) and would not be a viable option for
diluted seeds.
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TABLE V
ECONOMIC RETURNS TO FERTILIZER AND HYBRID SEEDS ADOPTION

Technologies
available in the Authentic

market technologies
Source (1) (2)

Panel A: Adoption of UREA fertilizers and hybrid seeds
Mean rate of return 6.5% 83.6%
Median rate of return 10.8% 83.1%
Fertilizer samples yielding positive net return 65.6% 100.0%
Fertilizer samples yielding rate of return > 25% 8.9% 100.0%
Fertilizer samples yielding rate of return > 50% 0.0% 100.0%

Panel B: 25% lower complementary expenses
Mean rate of return 15.8% 99.6%
Median rate of return 20.5% 99.0%
Fertilizer samples yielding positive net return 76.7% 100.0%
Fertilizer samples yielding rate of return > 25% 37.1% 100.0%
Fertilizer samples yielding rate of return > 50% 1.1% 100.0%

Panel C: 50% lower complementary expenses
Mean rate of return 26.9% 118.7%
Median rate of return 31.9% 117.9%
Fertilizer samples yielding positive net return 89.2% 100.0%
Fertilizer samples yielding rate of return > 25% 62.3% 100.0%
Fertilizer samples yielding rate of return > 50% 7.9% 100.0%

Notes. Average and median rate of return, and threshold values, for adopting fertilizer and hybrid seed on
one hectare of land. The unit of observation is a fertilizer sample. Column (1) presents the rate of return of
technologies available in the market and column (2) presents the rate of return if technologies were authentic.
Panel A, baseline scenario (see text for details). Panel B reports returns assuming 25% lower complementary
labor expenses and Panel C reports returns assuming 50% lower complementary labor expenses compared to
the baseline scenario reported in Panel A.

mentary inputs are 50% lower. Twenty-five percent lower costs of
complementary inputs imply the same cost share, l f s

(c f + cs+ l f s) , on
average, as in Beaman et al. (2013); that is, 26%, while 50% lower
expenses on complementary inputs imply that the complemen-
tary inputs (here, hired labor) account for less than one-fifth of
the total expenses for adoption.

With 25% lower complementary input expenses (Panel B), the
mean rate of return of inputs purchased in local markets is 15.8%
compared with 99.6% had these inputs been of authentic quality.
Of the samples bought in local markets, 37.2 would yield a return
above 25%, but a mere 1.1% would yield a return above 50%.
With 50% lower complementary input expenses, more than half
of the samples yield a return above 25%, but still only 7.9% yield
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a return above 50%. As a comparison, for authentic technologies,
almost all yield a return over 100%.

Our results are also robust along a number of other dimen-
sions. The economic returns reported in Table V were derived from
the experiments run on researcher-managed agricultural stations.
The experimental fields were chosen to mimic the agricultural
conditions faced by many smallholder farmers in Africa—and soil
tests confirmed that that was indeed the case.11 It is still likely,
however, that the yields (and thus the returns) we estimate are
higher than most small-scale farmers would achieve because the
crop management (planting, weeding, harvesting, etc.) followed
recommended practice and the procedures were homogeneously
applied across all plots. Many farmers, to a varying degree, do not
consistently follow these recommended guidelines. An advantage
of our approach is that the variation across plots and mean out-
comes are not driven by farmer-specific factors. We exploit that
variation in Section VII when we try to rationalize the observed
equilibrium in the market. Importantly, it also helps us interpret
the findings we report in Table V: the estimates provide upper
bounds—both for market and authentic technologies—on the re-
turn to adoption. That is, we estimate the returns that a small-
holder farmer with up-to-date knowledge about crop management
should be able to achieve.

Poor crop management would lower yields and thus returns
and would therefore make adoption of inputs bought in local mar-
kets even less likely to be profitable.12 To illustrate the effects,
assume yields are ϕ ŷ(nj, sk), where ϕ > 0. Online Appendix Fig-
ure A.2 plots the mean rate of returns for retail and authentic
technologies for different values of ϕ. As an example, if esti-
mated yields are 20% lower (ϕ = 0.80) than in the baseline sce-
nario reported in Table V, Panel A, the mean return is –15% for

11. See Online Appendix, section A.2 for details.
12. We estimate that average yield for small-scale maize farmers using tradi-

tional technologies (traditional seeds and no fertilizers) in 2013, using data from
the 2013/2014 LSMS data for Uganda, was 1.57 metric ton per hectare, or 14%
lower yield (95% CI 4–29%) than what we estimate in the research-managed trials
with traditional seeds and no fertilizer (see Online Appendix Table A.2). Average
yearly yield varies over time, although not strikingly so at the national level,
where average yield varied between 1.3 and 1.6 tons per hectare over the period
2009–2013. Average maize yield for the sample of smallholder farmers surveyed
here (also in 2013 and using traditional techniques) was 1.4 metric ton per hectare,
or 22% lower yield than in the research-managed trials.

file:qje.oxfordjournals.org
file:qje.oxfordjournals.org
file:qje.oxfordjournals.org
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fertilizer samples bought in local markets, while the rate of return
for authentic technologies is approximately 50%.

We estimate rates of return based on data for one season.
The broad spatial variation in the data (we use data from five
agricultural stations spanning three regions) likely relaxes some
concerns about the generalizability of the estimates. However, be-
cause small-scale agriculture in Africa largely relies on rain-fed
irrigation, yield is a function of weather realizations, which vary
over time (see Rosenzweig and Udry 2016). Differences in yield
are also likely to map into differences in net income (value of out-
put minus cost of inputs and hired labor), and relatively small
changes in yield can result in relatively large differences in net
income returns.13 Here, we focus on rates of return, defined as
the difference between net income and revenues from traditional
farming, expressed as a share of the total costs of the investment.
To the extent that yields and revenues from farming using both
traditional and modern technologies vary over time as a function
of weather realizations, the difference between them will net out
some time-series variation due to weather shocks. More impor-
tant, we focus on the difference between rates of return using
technologies from local markets versus authentic technologies,
both of which are functions of weather realizations. In fact, if
we approximate the relationship between the state of nature and
yields (or revenue) with the linear function ϕ pmŷ(nj, sk), where ϕ

represents the state of nature, Online Appendix Figure A.2 also il-
lustrates the impact of different weather realizations. An adverse
weather shock resulting in revenues from farming, independent
of technology choice, falling by say 20%, lowers the mean rate of
return for technologies in the market from 7% to –15% and lowers
the mean rate of return for authentic technologies from 84% to
48%. A positive weather shock leading to an increase in revenue
by 20% raises the rate from 7% to 28% and 84% to 120% for tech-
nologies in the market and authentic technologies, respectively.
In both cases there are large differences in rates of return from
using technologies available in local markets versus authentic
technologies.

Finally, it is possible that the labor costs when adopting au-
thentic technologies at harvest are higher than the labor costs
when using substandard inputs, simply because labor costs are a

13. Note that the state of nature (weather realization) may also affect prices
(for outputs and inputs).

file:qje.oxfordjournals.org
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function of yields. Assuming for small-scale farming that approxi-
mately a third of all labor costs are incurred at harvest, consistent
with the findings reported in, for example, Suri (2011), and as-
suming further that our estimate of l f scaptures the average total
complementary labor cost of adoption of inputs from the market,
then for a farmer using inputs with average market quality (n̄, s2),
labor cost at harvest, per metric ton per hectare, is l f s

3ŷ(n̄,s2) . If costs
are linear in yield, the (labor) costs incurred at harvest when us-
ing authentic inputs are then simply ŷ(46,s3)×l f s

3ŷ(n̄,s2) . This increase in
costs, however, has only a modest impact on the rate of return.
Compared with the baseline scenario reported in Table V, Panel
A, the average rate of return of adoption with authentic inputs
goes down from 84% to 77% and all fertilizer samples continue to
yield a rate of return over 60%.

VI. FARMERS’ EXPECTATIONS

Can poor quality of fertilizer and seeds and low rates of re-
turn help explain why farmers do not adopt modern inputs? For
that to be a plausible explanation, it ought to be the case that
(i) farmers expect that technologies available in the market are
of poor quality, and (ii) that farmers expect that there is a posi-
tive relationship between quality of inputs and yields. We turn to
these issues next.

A farmer (household) survey was administered to a sample of
farmers at the end of the second season of 2013. For each trad-
ing center visited as part of the 2014 fertilizer study, 10 farmers
within a 5-km radius from the trading center and 10 farmers in
5–10-km distance from the trading center were surveyed, using
a two-stage sampling strategy (see Online Appendix for details).
The objective of the survey was to collect detailed information
from small-scale maize farmers on their agricultural practices
and their expectations about the quality of and economic return
to fertilizers. In total, information was collected from 312 small-
holder farmers.

The subjective expectations module was designed to elicit a
farmer’s probability distribution over yield generated by growing
maize on their land either (i) without using fertilizer, (ii) by apply-
ing the recommended amount of urea using fertilizer bought from
the nearest shop, or (iii) by applying the recommended amount
of urea using fertilizer of the best official quality. Specifically,
farmers were first asked to give an estimate of the range of the

file:qje.oxfordjournals.org
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FIGURE V

Farmer Beliefs: Percent Nitrogen (%N) in Nearest Shop

The bars present the percentage of farmers’ beliefs about nitrogen content (per-
cent nitrogen; %N). Data from the household survey, 295 farmers.

distribution. The enumerator then calculated three evenly spaced
mass points between the minimum and the maximum stated by
the farmer. For each elicitation, farmers were given 10 beans and
instructed to place the beans on a plate describing the chance
that the event in question would be lower or equal than this num-
ber. We also collected data on farmers’ beliefs about the nitrogen
content of fertilizers in the nearest local shop by asking the re-
spondent to assess the quality of fertilizer on a scale of 1 to 10,
where 0 means there is no nitrogen, 5 means that half of the
official nitrogen is there, and 10 is the best possible quality.14

Figure V shows the histogram of farmers’ beliefs about the
nitrogen content of fertilizer in their nearest shop. On average,

14. See Delavande, Giné, and McKenzie (2011) for a review and analysis of
subjective expectations data from developing countries. Despite our attempt to
minimize measurement errors, these data should be interpreted with caution be-
cause we do not know whether the respondents fully understood the key concepts.
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TABLE VI
FARMER BELIEFS: PERCENT NITROGEN (%N) IN NEAREST SHOP

Mean Std. Min Max Obs.

%N 28.4 8.0 4.6 46 295

Notes. The values provide summary statistics of the expected nitrogen content in the nearest retail shop
from the farmer survey. See text and Online Appendix A2 for details.

farmers expect fertilizer bought in the marketplace to contain 38%
less nutrient, equivalent to a nitrogen shortfall of 17.6 percentage
points (Table VI). That is, expectations are on average in line
with the results we obtained from the fertilizer samples tested
(see Table I). There is substantial variation, however, even among
households close to the same trading center. Taken together, the
results suggest that although farmers as a group predict average
quality relatively well, individual farmers’ ability to infer quality
appears to be more limited.

In Table II, column (4), we report a linear regression of a
farmer’s expectation of yields on her expectation of nitrogen con-
tent (%N) in fertilizers bought in the nearest shop, where the
latter has been rescaled to range from 0% to 46%. As is evident,
there is a strong correlation between the expected quality of the
fertilizer and expected yield. Moreover, the estimated return to
nitrogen based on the farmer’s expectations is similar to the esti-
mates from the experimental plots.

Figure VI puts the two findings together—farmers expect fer-
tilizers in the market to be of low quality and lower quality is
expected to result in lower yield—by plotting the CDF of farmers’
expectations of yields conditional on technology choice and source
of the technology. The CDF of expected yield using authentic fertil-
izers is strongly shifted to the right of the CDF of farmers’ expec-
tations of yields using market quality fertilizer, which in turn lies
to the right of the CDF without fertilizers. A Kolmogorov-Smirnov
test rejects the equality of the three distributions at the 1% level.

VII. RATIONALIZING THE EQUILIBRIUM: LEARNING ABOUT QUALITY

We have shown that poor-quality inputs are the norm in the
retail markets we surveyed—spanning two of the main maize-
growing regions of Uganda—and that only a small share of the
fertilizers we observe in the market appear profitable. In this
section we start to rationalize the market equilibrium by zeroing

file:qje.oxfordjournals.org
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FIGURE VI

Farmer Expectations: Cumulative Distribution of Maize Yield

The solid line represents the cumulative distribution of expected yields in metric
tons per hectare when using authentic fertilizer. The dotted line represents the
cumulative distribution of expected yields when using retail fertilizer. The dashed
line represents the cumulative distribution of expected yields when not using
fertilizer. Data from the household survey.

in on one key determinant of the equilibrium: farmers’ ability to
learn about quality.

Fertilizers and hybrid seeds are experience goods; that is,
farmers typically observe neither the quality of the technology nor
the additional output their adoption would yield before purchasing
them. In largely unregulated and unmonitored markets for such
goods, a retailer’s incentive to provide high-quality goods hinges
crucially on the buyers’ ability to learn about quality after using
it (Shapiro 1982; Mailath and Samuelson 2001).

In assessing the quality of the inputs after use—based on
yields after adoption—farmers, especially smallholder farmers,
face a difficult inference problem. Even holding farming practice
and quality of the inputs constant, yields vary due to a number of
factors that are mostly unobservable to the farmer, including the
fertility status of the soils and the inherent variability of seeds.
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FIGURE VII

Densities of Yield for Different Input Qualities

The density, for each quality combination, is based on 30 randomly assigned
plots, with observations from the research managed trials. The solid line depicts
the density of yields (metric tons per hectare) when using authentic fertilizer (%N
= 46) and farmer seeds. The dotted line depicts the density of yields when using
technologies with close to mean market quality (%N = 23) and farmer seeds. The
dashed line depicts the density of yields when using the technologies with the
lowest quality (%N = 0) and farmer seeds. Data from the experimental plots.

Thus, a farmer must disentangle the quality of inputs from a noisy
yield signal.

Figure VII illustrates the inference problem by plotting the
density of yields for three quality combinations—authentic in-
puts, inputs with mean market quality, and inputs with the low-
est quality—using data from the researcher-managed agricultural
trials. Even holding quality and agricultural practice constant,
yield varies substantially across plots.

The results presented so far provide indirect evidence of the
learning environment. Low quality is the norm in the market;
however, the nutrient content in fertilizers is not zero and the
market has not collapsed, suggesting that farmers do learn about
quality to some extent. At the same time, the variation in qual-
ity we observe appears uncorrelated with price, suggesting that
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farmers’ ability to infer quality is far from perfect, otherwise one
would expect prices to adjust.

We now present a simple learning model, which we calibrate
using data from the researcher-managed agricultural trials, to
calculate a Bayesian farmer’s confidence that the fertilizer she
is experimenting with is profitable and the resulting willingness
to pay for it. We use the model to answer two questions. (i) What
range of quality levels would one expect to find in the market given
a farmer’s (limited) ability to learn about the quality of inputs?
In other words, can learning in a noisy environment explain why
the market looks like it does? (ii) Would a seller selling authentic
fertilizer be able to build up a reputation for doing so both under
the status quo and when additional constraints are lifted?

VII.A. A Model of Learning about Quality

Consider a farmer who wants to adopt fertilizer and starts
experimenting with it on a small plot.15 The farmer knows that
fertilizer of sufficiently high quality, say, with a rate of dilution
θ < θ∗, where θ∗ is the threshold level, is profitable. However, the
farmer cannot directly observe the quality of the fertilizer in the
market; that is, the dilution level θ ∈ [0,1] is unknown. The farmer
must therefore infer quality based on the yields on her plot.

The farmer knows that the systematic relationship between
yield (y) and the quality of inputs is given by

(2) y = g (θ ).

Furthermore, the farmer has some prior belief about the distribu-
tion of fertilizer quality on the market �(θ ) (with density π (θ )).16

15. The assumption that the farmer starts experimenting on a small plot can
be motivated in different ways. For example, credit or cash constraints, which
have been shown to be important in recent experimental studies on adoption
(Duflo, Kremer, and Robinson 2011; Karlan et al. 2014), may force farmers to start
small. More generally, low profitability and high uncertainty could also constrain
the scale of experimentation.

16. Our model is related to those in Foster and Rosenzweig (1995) and Conley
and Udry (2010), where farmers learn about the optimal level of fertilizers to be
applied, which in our setup corresponds to learning about the g() function. We
consider learning about the quality of fertilizer rather than the optimal amount
to apply. Indeed, to home in on the dimension of learning relevant to our data,
we assume that farmers know the optimal quantities and how these (on average)
translate into yields, g(θ ), but they do not observe the quality of the technology.
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In period (or on plot) t = 1, a farmer experiments with fer-
tilizer with an unobserved dilution level θt = θ̂t randomly drawn
from a distribution F(θ ), and receives a private signal ωt about y,
after each experimentation (harvest), given by

(3) ωt = g(θ̂t) + εt,

where εt ∼ N(0, σ 2
ε ) is a noise term that is unobserved but whose

distribution is known to the farmer. Note that εt is assumed not
to be a function of the unknown input quality.

Observing a signal ω1, a Bayesian farmer will update his
belief; that is, the density of the distribution over θ , at any point
θ . By Bayes’ rule the updated posterior density is

(4) π (θ |ω1) = f (ω1|θ) π (θ )
∫1

0 f (ω1|θ ) π (θ )dθ
,

where f (·|θ) is the distribution of the signal conditional on the
farmer’s belief about quality. Iterating on this expression, we can
write the density of dilution level θ after experimenting for t
rounds (or on t plots) as

(5) π (θ |ω1, . . . , ωt) =
∏

i f (ωi|θ) π (θ )
∫1

0
∏

i f (ωi|θ ) π (θ )dθ
,

where π (θ ) is the initial prior density.
To examine the speed and ease of learning about quality, we

consider a farmer’s confidence in determining whether the fertil-
izer she is experimenting with is profitable in the sense that it
corresponds to a dilution level below or above the cut-off θ∗. The
posterior odds ratio; that is, the probability that fertilizer is prof-
itable given the observed signal relative to the probability that
fertilizer is not profitable given the signal is

(6)
P(θ̂ � θ∗|ω)
P(θ̂ > θ∗|ω)

= ∫θ∗
0 π (θ )dθ

∫1
θ∗ π (θ )dθ

× ∫ f (ω|θ, θ � θ∗) π (θ |θ � θ∗)dθ

∫ f (ω|θ, θ > θ∗) π (θ |θ > θ∗)dθ
,

In the case of learning about the dilution of a single-nutrient fertilizer, we could
in principle rewrite the model along the lines of Foster and Rosenzweig (1995)
and Conley and Udry (2010) and let farmers experiment with identifying the right
amount of fertilizer to apply to compensate for the unknown dilution level in the
market.
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which is just the prior odds ratio times the ratio of marginal like-
lihoods, or the Bayes factor (see Greenberg 2013).

We consider two variants of the learning environment. In the
first version, we assume that farmers experiment with constant
fertilizer quality θ̂ , drawn from the market density. In the second
version we instead let farmers draw a new quality level θ̂t from
the market density in each period.17

The posterior odds ratio provides an illustrative way to ex-
amine the learning environment without having to specify the
relationship between quality, expected utility, and demand. With
more structure, however, we can also estimate the hypothetical
farmer’s willingness to pay (WTP) for fertilizers as a function
of the dilution rate θ̂ . To do so, we compare the expected util-
ity of adopting fertilizer, where the expectation is taken over the
farmer’s posterior density of fertilizer dilution given the harvests
she has observed during experimentation, to the certain return (in
utility terms) of farming using traditional methods.18 Specifically,
let the systematic relationship between yield and quality of in-
puts be given by equation (2). We assume that to invest in modern
inputs, the farmer can borrow at a rate r (or that is her outside
return on the funds used for investment). We further assume that
utility is separable in consumption and leisure. Given the results
in Section V, we assume that the additional labor for fertilizer use
is hired labor, denoted lh. The willingness to pay for fertilizer of

17. A smaller follow-up study was implemented during the first season of
2016 (see Online Appendix). In the follow-up study, we repeatedly sampled (once
every month) and tested DAP from nine stores in three regions. Defining dilution
of a DAP fertilizer sample as the weighted average of the dilution of the two
main nutrients (nitrogen and phosphorus), we find an average dilution rate of
26%. Decomposing the variance, the between-store standard deviation is about
five times larger than the within-store standard deviation, suggesting that the
model variant in which farmers experiment with constant fertilizer quality is
more appropriate.

18. The assumption that the yield from farming with traditional methods is
certain is simplifying and could be relaxed without changing the qualitative find-
ings. However, because farmers have typically farmed with traditional methods
over a long period and on a larger scale, presumably the uncertainty is significantly
smaller than when experimenting with modern inputs.

file:qje.oxfordjournals.org
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quality θ̂ , WTP(θ̂ ), is then implicitly defined by equation (7),

1
∫
0
π (θ |ω1, . . . ωt)u(pmg(θ ) − (1 + r)(lh + WT P(θ̂ )))dθ − ψ(l f )(7)

� u(pmg(1)) − ψ(l f ),

where l f is the amount of family labor and ψ(l f ) the value of
leisure. Note here that, consistent with the assumption on the
relationship between yield and the quality of inputs (equation (2)),
we assume that yield when adopting at scale (here normalized to
one hectare) is given by g(θ ). Thus, to focus on how uncertainty
about quality influences willingness to pay, we abstract from the
uncertainty related to the realization of yields for a given dilution
level when going to scale. However, as a comparison, we also report
estimates of the WTP that incorporate such additional uncertainty
(see Section VII.C).

VII.B. Calibrating the Model

To use the model to assess farmers’ confidence in inferring
quality and their willingness to pay we need to solve equations
(6)–(7).19 To do so we need to specify the systematic relationship
between yield (y) and quality of inputs (θ ), that is, equation (2). We
also need to estimate the variance of the unobserved noise term σ 2

ε

in the signal equation (3), determine the profitability threshold θ∗,
and make an assumption about the farmer’s prior belief about the
distribution of fertilizer on the market, �(θ ). Finally, to estimate
the willingness to pay we further need to specify the price of maize
and the cost of adoption and parameterize farmers’ preferences.

Consistent with the findings reported in Table II and illus-
trated in Figure IV, we assume that the yield function, y = g(θ ),
can be approximated by a linear function. We then use the ex-
perimental yield data to estimate the parameters of this function.
Specifically, using data from the research managed trials, we es-
timate (by OLS)

(8) yj = α + βθθ j + e j,

where y denotes total yield per hectare, θ = (46−%N)
46 , and subscript

j refers to a plot. To consider learning about fertilizer quality, we

19. The integrals in equation (6) are evaluated numerically using Gauss-
Chebyshev quadrature.
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consider one type of seed (farmer seeds), so we drop subscript k.
As inputs were randomly assigned across plots, βθ captures the
causal effect of inputs on yields.

Letting a and bθ denote the estimated parameters in equation
(8), our empirical counterpart of equation (3) is then given by

(9) y = g(θ ) = a + bθ θ.

We also use experimental yield data to estimate the variance
of the unobserved noise term. Specifically, we use the distribu-
tion of the residual from regression (8) as an estimate of the
distribution of the noise in the signal equation; that is we set
σ 2

ε = σ 2
e , where σ 2

e is the variance of the residual in regression (8).
In essence we assume that the density of yields for a given quality,
derived using data from a large set of plots where identical inputs
have been employed, provides a good proxy for the uncertainty
about quality that farmers face when experimenting on their own
plots. We then decompose this variation into two components: the
variation accounted for by the inputs, g(θ ), and the unexplained
variation, that is, the noise term in equation (3).

Two remarks about this approach are in order. First, we as-
sume that the noise term in the signal equation (3) is homoskedas-
tic, that is, it is not a function of the level of dilution. A White
(1980) test for heteroskedasticity also confirms that this assump-
tion is consistent with the data.20 Second, an advantage of using
data from the agricultural trials is that the variation in yields
across plots, and especially the estimated noise in the data, for
a given, randomly assigned technology bundle, are not driven by
variation in farmer-specific factors or inflated by measurement
error problems. Nevertheless, it is possible that our estimate of
the distribution of the noise in the signal equation, and thus the
learning environment, may not capture the learning environment
faced by many smallholder farmers very well. Our estimate may
understate the learning problem if farmers do not manage their
plots consistently. We would also underestimate the severity of the
learning problem if experimentation primarily takes place over
time, and farmers cannot perfectly filter out ex post differences
in weather shocks and if the signal-to-noise ratio is a function of

20. The standard deviation of the residual in regression (8), σe, is 0.77. The
test statistic for the null hypothesis of homoskedasticity is χ2 = 4.23, with p-value
= .13.
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these shocks.21 Our estimate may overstate the learning problem
if, for example, farmers experiment on larger plots than in our
agricultural trials and the idiosyncratic variations we pick up in
the agricultural trials are decreasing in plot size, which seems
likely.

To get a sense of how well our cross-sectional estimate cap-
tures the variance in returns among farmers both over time and
space, we exploit data from the Uganda LSMS-ISA. The Uganda
National Panel Surveys contain four waves of household survey
data from which plot-specific measures of yield can be derived
for two seasons each in 2009, 2010, 2011, and 2013. As reported
in Section II, relatively few farmers use fertilizers and hybrid
seeds, so we focus on the subsample of farmers using traditional
farming methods. We then estimate a simple farmer fixed effects
regression (see Online Appendix), controlling only for plot size,
and estimate the standard deviation (σLSMS) of the residual from
the regression and the relative standard deviation (the standard
deviation of the residual divided by the mean of the dependent
variable). The results are reported in Online Appendix Table A.2.
Average maize yields vary between 1.3 and 1.6 metric tons per
hectare, and the relative standard deviation varies between 0.26
and 0.55, over the four waves (year). Pooling data for all four years
gives an average maize yield of 1.4 metric tons per hectare and
a relative standard deviation of 0.70. Using experimental data
from the subset of plots with traditional inputs (no fertilizer and
traditional seeds), we estimate an average maize yield of 1.8 and
a relative standard deviation of 0.29. Thus although the variance
in yield returns is larger in the LSMS data relative to the exper-
imental data, especially in the pooled data spanning five years,
the difference is relative modest, suggesting that the learning en-
vironment we study here is fairly representative of the learning
environment facing Ugandan farmers more generally.

Finally, we assume a 25% rate of return for profitability, which
is close to the official interest rate, and we use equation (1) to back

21. In a rain-fed irrigation system as in Uganda, the timing and level of
rains matter for yields. The severity of the learning problem, however, depends on
the signal-to-noise ratio (in the model specifically the ratio bθ

σe
). This implies, for

example, that if we assume that yield is a linear function ϕ ŷ(nj , sk) of the state of
nature ϕ, then variations in ϕ, while affecting both bθ and σe, will not affect the
ratio bθ

σe
.

file:qje.oxfordjournals.org
file:qje.oxfordjournals.org
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out the implied profitability threshold θ∗, which from Table V is a
dilution rate of 17%, equivalent to 38%N.

To estimate the WTP, we use the estimates of price and costs
as discussed in Section V and assume that farmers have prefer-
ences that are characterized by constant relative risk aversion.22

VII.C. Results

We now use the learning framework derived above to start ra-
tionalizing the equilibrium we observe. To do so, we investigate,
within the model, Bayesian farmers’ ability to infer quality and
willingness to pay conditional on the level of dilution, when the
farmers initially only know the possible range of fertilizer dilution
in the market; that is, θ̂ ∈ [0,1]. The first experiment thus provides
information about the likely quality range that would emerge in
the market if farmers initially have little information. We focus
on three questions: (i) Is the learning environment such that high
levels of dilution will be found out very quickly and farmers would
therefore not be willing to pay for such fertilizers—consistent with
the absence of fully diluted fertilizers in our sample? (ii) Would
risk-averse Bayesian farmers be willing to buy samples with in-
termediate dilution levels—consistent with the range of dilution
levels available in the market—and is the share of farmers will-
ing to buy fertilizer similar to what is observed in the household
data? (iii) Finally, is the range of quality supplied in the market
consistent with seller profit maximization given farmers’ ability
to learn and willingness to buy fertilizer of a given quality?

We then turn attention to a more hypothetical question: do
sellers selling authentic fertilizer have pecuniary incentives to en-
ter the market given the surveyed farmers’ beliefs about fertilizer
quality, under the status quo and when additional constraints are
lifted?

1. Why Does the Market for Fertilizer Look Like It Does? As
a first step toward understanding why we observe the distribution
of fertilizer quality that we do, we derive a relationship between
the dilution level of fertilizer and a Bayesian farmer’s ability to
learn about fertilizer profitability from experimentation. To trace
this relationship, we consider all possible dilution levels, that is,

22. For the main results, we assume that the coefficient of risk aversion is 2.
We have found the results to be broadly the same for intermediate levels of risk
aversion.
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θ̂ ∈ [0,1], and let the farmer experiment 1 . . . T times for each
dilution level. We assume that the farmer knows the range of fer-
tilizer dilution but has no other information. Her prior is thus
best described by a uniform distribution over [0,1]. We evaluate
her confidence in inferring quality when she receives an unbiased
private signal ωt about fertilizer quality after each period of ex-
perimentation (that is, the randomly drawn noise term εt takes
the value 0).

In Figure VIII, Panel A, we plot the Bayesian farmer’s log10
odds ratio in favor of fertilizer being unprofitable, log10( P(θ̂>θ∗)

P(θ̂�θ∗)
),

for each possible dilution level after 1, 5, and 10 rounds of
experimentation.23 We also categorize the learning environment,
conditional on θ̂ , into three regions based on how fast the Bayesian
farmer learns over time. To that end, we calculate the marginal
likelihood after five periods; specifically, we filter out the prior by
taking the difference between the log10 posterior and prior odds
ratio. Following standard notation, we label an absolute change
in the log10 odds ratio of 1 or greater as regions characterized
by strong learning; an absolute change in the log10 odds ratio
smaller than 1 but greater than 0.5 as a region characterized by
moderate learning, and an absolute change in the log10 odds ratio
smaller than 0.5 as characterized by weak learning.24

There are large variations in the speed of learning across
the range of dilution rates. For high levels of dilution (θ̂ � 0.5),
learning is fast. As a result, the farmer quickly concludes that
fertilizer is unprofitable, with strong evidence against profitability
accumulating after one (three) [five] periods if the rate of dilution
is above 55% (42%) [37%].

For intermediate dilution rates, however, learning is either
moderately fast (0.40 < θ̂ < 0.50) or slow (0.18 < θ̂ � 0.40), which
implies that it takes more than 10 rounds of experimentation

23. We present the log10 odds ratio because of its symmetry properties: a
log10 odds ratio of 1 implies that the farmer thinks it is 10 times more likely that
fertilizer is not profitable (than that it is) and a log10 odds ratio of –1 implies that
she thinks it 10 times more likely that fertilizer is profitable (than that it is not).

24. Jeffreys (1961) and Kass and Raftery (1995) suggest interpreting the
strength of the evidence in favor of model M1 as “decisive” if the posterior log
odds ratio � 2 in favor of model M1 relative M2, and as “strong” if the posterior
log10 odds ratio � 1 in favor of the alternative. If the posterior log10 odds ratio
� 0.5 but greater than 0, Jeffreys (1961) and Kass and Raftery (1995) label the
evidence in favor of model M1 as “weak” or “inconclusive.” If 0.5 < posterior log10
odds ratio < 1, they suggest interpreting the evidence as “positive” or “moderate.”
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FIGURE VIII

Learning about Fertilizer Euality: Evidence in Favor of Fertilizer Being
Profitable or Not

Panel A: Log10 odds ratios in favor of fertilizers being profitable relative to being
unprofitable after 1 (solid line), 5 (dashed line), and 10 (dotted line) rounds of
experimentation. Panel B: Distribution function of fertilizer quality in the market
(solid line). Strong learning if the absolute change in the log10 odds ratio (marginal
likelihood) is greater or equal to 1; moderate learning if the absolute change in
the log10 odds ratio is smaller than 1 but greater than or equal to 0.5; and weak
learning if the absolute change in the log10 odds ratio is smaller than 0.5.
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to amass strong evidence that fertilizer of average quality is
unprofitable.25 As quality increases and fertilizer becomes prof-
itable, learning speeds up again, but this is not sufficient to
convince the farmer that fertilizer is profitable given the initial
beliefs. In fact, it takes three or more rounds of experimenta-
tion to accumulate any evidence in favor of profitability for most
fertilizers in the authentic to almost authentic region (a shortfall
of %N of less than 10%), and even after 10 periods, the evidence
remains weak and inconclusive for most fertilizers in this range.26

To show that farmers’ ability to learn about quality plausi-
bly constrains the amount of dilution in the market, we combine
the relationship between dilution and learning with the distribu-
tion of quality in the fertilizer samples purchased by the covert
shoppers. In particular, in Figure VIII, Panel B, we plot the dis-
tribution function of fertilizer quality in the market samples and
overlay this with the learning regions from Panel A. Consistent
with the finding that farmers are able to deduce that fertilizer is
not profitable when the dilution of nutrients in fertilizer is high,
we observe few samples with very low nitrogen content: less than
5% of samples lie in the range where learning is fast (θ̂ > 50%).
Conversely, approximately 60% of the samples are located in the
range where learning is slow and uncertainty about profitability
is large.

Beause farmers have great difficulty in determining the prof-
itability of most of the fertilizers in the market sample, it is natu-
ral to ask to what extent this affects demand. To answer this ques-
tion, we now consider at each dilution rate, θ̂ ∈ [0,1], N = 1,000
initially uninformed farmers. The farmers experiment with fertil-
izer of quality θ̂ for T rounds and receive a signal with random

25. Learning after one period in our model is slower than after the one har-
vest intervention in Hanna, Mullainathan, and Schwartzstein (2014). In Hanna,
Mullainathan, and Schwartzstein (2014) farmers are presented with information
on optimal seaweed pod size based on a larger number of experiments, equivalent
to many more rounds or larger scale of fertilizer experimentation in our model,
whereas in our model farmers learn from experiments one plot/period at a time.

26. If we do not restrict attention to unbiased signals, so each farmer receives a
unique sequence of signals, farmers will initially draw different conclusions about
the quality on the market for a given quality. Random signals will also result in
farmers switching from being relatively confident that quality is high to quality
being low. This result, in turn, may help explain why smallholder farmers, as
documented in several studies (e.g., Duflo, Kremer, and Robinson 2006; Dercon and
Christiaensen 2011; Suri 2011), switch into and out of hybrid seed and fertilizer
use over time.
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noise about the fertilizer’s quality after each period. From this, we
calculate each farmer’s posterior distribution, their net expected
utility and willingness to pay (see equation (7)) for fertilizer of
dilution rate θ̂ after t = 1, . . . , T .

In Figure IX, Panel A, we plot the average as well as the 95th
percentile of the willingness to pay, normalized by dividing by the
cost of adoption at average market prices, across the N farmers
at each dilution rate after five rounds of experimentation. For
fertilizers with dilution rates above 50%, effectively no farmer
has a WTP above average market prices; that is, farmers’ ability
to detect high dilution implies that farmers would not be willing
to buy them at current market prices.

Turning to the moderately diluted fertilizers (<40% dilution),
we see that lack of confidence about profitability also constrains
willingness to pay in this range: the average normalized WTP
is below the (average) market price for almost the full range of
quality after five periods and rises just above 1 for fertilizers with
dilution levels of 4% or below.

For fully authentic quality, where the WTP would be 55%
above average market price if quality was certain, it takes five pe-
riods before the average willingness to pay rises above the average
market price.

That the average willingness to pay is below average market
price for almost all dilution levels does not imply zero demand,
however. Learning implies that farmers respond to both signal
and noise, so there will be farmers who end up with a WTP equal
to or above the (average) market price at early stages of experi-
mentation, even though for the most part fertilizer quality is too
low to be profitable. In fact, the 95th percentile of the WTP is
above the (average) market price after five periods of experimen-
tation for dilution levels up to the mean market level (Figure IX,
Panel A). Hence there is a group of farmers with willingness to
pay above market price, which consists of two types: those who
experiment with fertilizer that is not profitable but who have ob-
served higher than average yields (given the level of dilution) in
a small number of experiments, and those who experiment with
fertilizer that is profitable.

Over time, as farmers become more confident about the qual-
ity of the fertilizer they are experimenting with, the spread of
the willingness to pay is reduced while its average increases. To-
gether these effects imply that the share of farmers willing to buy
at market price increases for profitable fertilizers, whereas it is



1090 QUARTERLY JOURNAL OF ECONOMICS

FIGURE IX

Willingness to Pay (WTP)

Panel A: Average (solid line) and the 95th percentile (dashed line) of the nor-
malized willingness to pay conditional on the level of dilution of fertilizers after
five periods of experimentation. Panel B: Share of farmers with a willingness to
pay above the (average) market price (WTP> 1) after three (solid line) and five
(dashed line) periods.
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TABLE VII
WILLINGNESS TO PAY (WTP) AND ADOPTION RATES

Panel A: Model estimates
WTP > 1 (WTP |θ̂ � θ∗) > 1

Periods of experimentation 3 5 15 3 5 15

Share of farmers (constant 7.7% 12.5% 17.9% 2.7% 4.5% 7.8%
quality draws)

Share of farmers (time 6.3% 6.4% 5% — — —
variant quality draws)

Panel B: Household survey data

Conditional on urea
Used urea in last seasons use in season 1, used

Season 1 Season 2 urea in season 2

Share of farmers 12.6% 10.2% 59.5%
Number of farmers 294 295 294

Notes. Panel A reports estimates from the Bayesian model (see text for details). The first three columns
(WTP > 1) depict the share of farmers (after 3, 5, and 15 periods) with a normalized willingness to pay above
the (average) market price and the three last columns (WTP|θ̂ � θ∗) > 1 depict the share of farmers (after
3, 5, and 15 periods) with a normalized willingness to pay above the (average) market price conditional on
drawing a profitable fertilizer sample (θ̂ � θ∗). The first row reports the results when farmers experiment
with constant fertilizer quality θ̂ drawn randomly from the market distribution. The second row reports the
results when farmers draw a new quality level θ̂t from the market density in each period. Panel B reports
summary statistics from the household survey data. The first two columns report the share of farmers, by
season (first and second season of 2013), reporting to have used urea on at least one plot. The last column
reports the share of farmers that continued to use urea on at least one plot in season 2, conditional on using
urea in season 1.

more stagnant for unprofitable but not too highly diluted fertiliz-
ers (0.3 < θ < 0.4) (see Figure IX, Panel B).

Combining this information with the distribution of dilution
in the fertilizers we sampled as part of the covert shopper ap-
proach (see Figure I), we can infer the likely demand sellers would
face if prices are fixed. Assuming that farmers experiment with
constant fertilizer quality θ̂ drawn randomly from the market dis-
tribution, we find that 12.5% of farmers end up with a willingness
to pay equal to or higher than the current market price after five
rounds of experimentation (see Table VII, Panel A). Of these, just
over a third would buy from sellers selling profitable fertilizer and
just under two thirds would be overly optimistic and buy from sell-
ers with moderate dilution rates. If instead, farmers drew a new
quality level θ̂t from the market density in each period, the share
of farmers with a willingness to pay at least average market price
is halved after five periods. This is the case because the addi-
tional uncertainty that comes with the variation in θ̂ complicates
the inference problem even more.
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As time passes, the share of farmers with a willingness to pay
greater than the market price increases, but the composition of
demand remains fairly constant, at least over the medium run.

Of course, with Bayesian learning, the proportion of overly op-
timistic farmers willing to buy unprofitable fertilizer would even-
tually shrink to 0. But this happens quite slowly; even after 20
periods of experimentation, when around one in five farmers are
willing to buy at market price, the share of those buying unprof-
itable fertilizer is still roughly 50%. Put another way, in our model,
a seller selling unprofitable but not too diluted fertilizers, can still
expect to capture a (small) part of the market for a relatively long
period of time.

Table VII, Panel B, reports the closest empirical counterpart,
using data from the household survey, to the estimates in Panel
A. Urea use varied between 10.2% and 12.6% over the last two
seasons—numbers that are similar to the 13% (17%) of farm-
ers with a WTP above the (average) market price in the model
after 5 (10) periods. Moreover, conditional on using urea in the
first of the two seasons for which we have data, 59.5% continue
to use it the following period, which again is broadly consis-
tent with the model’s prediction that about half of the farmers
with a WTP above the (average) market price buy from sellers
selling profitable fertilizer, assuming that farmers that manage
to buy fertilizers of sufficiently high quality would continue to
do so.

Finally, we ask whether the range of quality observed in the
market could be consistent with sellers who maximize profits tak-
ing farmers’ willingness to pay for fertilizer as given. If we assume
that sellers are local monopolists and compete on quality, that is,
the price is fixed or taken as given, then the share of farmers
with willingness to pay above the (average) market price in Fig-
ure IX, Panel B could be interpreted as the seller’s demand as a
function of dilution. If in addition, the cost of supplying quality
is increasing and convex, it is straightforward to show that the
profit-maximizing dilution level is increasing in the slope of the
demand curve.27 That is, the steeper the demand curve, the lower
dilution. As illustrated in Panel B, as farmers become more con-

27. Denote demand as a function of dilution by d(θ ) and cost by c(θ ). Profit
maximization implies that pdθ (θ ) = cθ (θ ), with a maximum implying pdθθ < cθθ .

Differentiating the first-order condition and rearranging gives ∂θ
∂dθ (θ) = −p

pdθθ −cθθ
,

which is greater than 0 from the second-order condition.
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fident in drawing (correct) conclusions about the quality in the
market, the “demand” curve becomes steeper. Thus, within the
context of this extended model, improved precision in learning
about quality maps into higher quality. That is, a potential expla-
nation for part of the variation in quality we observe across sellers
is that farmers’ ability to infer quality differs across locations.

Taken together, the results show that high dilution rates will
be found out quickly. As a result, farmers would not buy fertilizers
of too low quality and the incentives to sell these highly diluted
fertilizers should be weak. On the other side of the spectrum, it is
difficult and takes time for farmers to accumulate evidence that
authentic or close to authentic fertilizers are sold, when that is
in fact the case. This implies that it will take a long time for
sellers to build up a reputation as a high-quality retailer and
price their products accordingly. At the same time, as profit mar-
gins are presumably in some way related to the rate of dilution
of fertilizer, sellers likely have strong short-run incentives not
to sell high quality. In fact, given the unregulated and unmoni-
tored market structure and the difficulty farmers face in learning
about profitable fertilizers, the question may not be why we ob-
serve widespread dilution of fertilizers on the market but why any
seller would supply profitable fertilizers without a markup, which
we do observe. The answer is likely that at least some sellers have
important intrinsic and nonpecuniary motivations not to sell in-
puts of too low quality. Finally, consistent with the evidence from
the farmer survey, we have shown that the market does not col-
lapse. Some farmers do buy. In the model they do so because they
either have managed to purchase profitable fertilizers or because
they are overly optimistic after receiving (a series of) positive yield
shocks.

2. A Market for High Quality? Having focused on explain-
ing the market as is, we now move to a more hypothetical ques-
tion: what would happen if a seller committed to high quality
entered the market and started selling fertilizer to farmers, in
particular, to the farmers surveyed in our study. Assuming that
farmers are Bayesian, and given the farmers’ (initial) distribution
about quality, we investigate whether a seller committed to high
quality would be able to build a reputation for selling profitable
fertilizer and price its product accordingly, under the status quo
and when additional constraints that might improve the learn-
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ing environment are lifted. This is an interesting counterfactual
policy question because a potential intervention to overcome the
lemons problem in the market for fertilizer could be the entry
of a nongovernmental organization (NGO) or a private firm that
sells the highest possible quality, not necessarily at a subsidized
price and without a strong reputation to begin with. Thus, we
are interested in understanding how beliefs, willingness to pay,
and adoption would evolve over time given existing (prior) beliefs
among farmers in our data.

We determine the rate of learning about authentic quality and
what farmers are willing to pay for such quality by letting each
of the N farmers in our survey experiment for T periods with
authentic fertilizer.28 For each farmer, we derive the prior density
of dilution rates from her reported distribution of fertilizer quality
in the nearest shop. Following each round of experimentation, the
farmer receives an unbiased signal with standard deviation σε

about fertilizer quality, where we use either the estimate from the
experimental data as before or a 50% higher level to account for
additional uncertainty at the farmer level. The farmer updates
her posterior density according to Bayes law, and we can then
use this density to calculate the distribution of confidence and the
willingness to pay for authentic fertilizer in the sample of farmers
we surveyed.

Consistent with the previous analysis, being confident that
fertilizer is profitable takes time even for the slightly more opti-
mistic farmers in our survey. After five rounds of experimentation,
only 16% of farmers have strong evidence in favor of profitability.
This number is even lower (less than 1 in 10) if the noise experi-
enced by farmers is larger than the benchmark estimate (Online
Appendix Figure A.4). Similarly, few farmers are willing to buy,
at least initially: only one in five has a willingness to pay above
market price after experimenting once, and this drops to less than
1 in 10 if learning is even noisier. Although this number rises to
70% and 50%, respectively, after five periods of experimentation,
the average willingness to pay only just exceeds market price at
this stage and the average margin for those with a willingness to
pay above market price is roughly half of that which would obtain

28. To account for some quality shortfalls even from a seller committed to high
quality, we assume that fertilizer quality is uniformly distributed on the “almost
authentic” interval θ ∈ [0, 0.1].

file:qje.oxfordjournals.org
file:qje.oxfordjournals.org
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if quality was known with certainty.29 Hence a seller committed
to high quality could potentially establish themselves, but only if
they are in it for the long haul. Moreover, such a seller could ei-
ther capture a large share of the market or raise prices, but would
struggle to do both.

Our analysis so far is based on a set of parameters estimated
directly from the data. Importantly, several of these parameters
are determined by factors we do not study here but that relate
directly or indirectly to several constraints to adoption that have
been highlighted in the recent literature. For example, lack of
information about optimal agricultural practice and the use of the
technologies has a direct effect on profits and thus the farmers’
willingness to adopt.30 It may also affect the variability in returns
to adoption (or to farming in general) and thereby farmers’ ability
to infer quality.

Learning about quality would in principle also be enhanced
by combining more information sources, that is, through social
rather than individual learning.31 Observing technology choices
and yield from other farmers will increase the number of sig-
nals a farmer would receive at each point in time and thereby
speed up the process of learning about quality. However, as the
signal-to-noise ratio when learning from others is affected by the
heterogeneity in plot characteristics and especially farmer char-
acteristics (Munshi 2004), it may also complicate the inference
problem.32

29. Adding uncertainty to the realization of yields for a given dilution level
when going to scale (see Section VII.A) lowers the willingness to pay even further
(see Online Appendix Figure A.3), although the fall in the WTP is relatively small.

30. Duflo, Kremer, and Robinson (2006) show that intensive extension work
significantly increased the use of fertilizers, although the quantitative effects were
quite small.

31. On social learning about expected yield, see, for example, Besley and Case
(1994) and Munshi (2004). On social learning about optimal input application, see,
for example, Foster and Rosenzweig (1995), Conley and Udry (2010), and Duflo,
Kremer, and Robinson (2006). The empirical evidence is somewhat mixed, with
Foster and Rosenzweig (1995) and Conley and Udry (2010) showing evidence in
favor of social learning, whereas Duflo, Kremer, and Robinson (2006) show that
information from neighbors plays a very limited role in decisions about fertilizer
use.

32. The less a farmer is able to observe actions and characteristics of her peers,
the more difficult it will be for her to accurately assess the available information,
and the more likely that she makes mistakes.

file:qje.oxfordjournals.org
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Both fertilizers and hybrid seeds are divisible and standard
theory does therefore not predict that credit constraints can ex-
plain why farmers do not use these technologies at all.33 Liquidity
and risk constraints, however, do not only have a potential direct
effect on farmers’ willingness to adopt but could also affect farm-
ers’ ability to learn about quality by forcing farmers to experiment
at small scale—as we assume in our learning model.34 Having ac-
cess to insurance markets and not facing any liquidity constraints
should allow farmers to experiment on a larger plot. This in turn
will likely attenuate some of the measurement error in the signal
equation (3) and thus increase the signal-to-noise ratio.

Assuming the relaxation of credit, liquidity, and information
constraints increases the signal-to-noise ratio, we can home in on
one potential mechanism through which the relaxation of these
constraints may impact the market for high quality. Specifically,
we repeat the analysis of letting the farmers in our survey exper-
iment for T periods with authentic fertilizer but reduce the noise
on the quality signal.

If farmers could experiment in a less noisy environment, con-
fidence about quality and therefore the seller’s ability to price her
products appropriately would increase faster (Online Appendix
Figure A.4): with noise equivalent to 50% of the original standard
deviation, half the farmers would have strong evidence that fer-
tilizer is profitable after five periods of experimentation and 90%
would have a willingness to pay above 1, with the average margin
around two thirds of that obtained under certainty. Of course, this
margin in turn is constrained by the relatively high required rate

33. This no longer holds if there are fixed costs to adoption, for instance,
fixed costs in buying the inputs. Such fixed costs would have to be implausibly
large, however, to justify the lack of investment in fertilizers and/or hybrid seeds
in the standard model (see discussion in Duflo, Kremer, and Robinson 2011). Ex-
perimental evidence on technology adoption in agriculture suggests that credit
constraints are not a binding constraint for most farmers. Financial barriers, how-
ever, go beyond a lack of credit access. Karlan et al. (2014) find substantial demand
for index insurance and a strong effect of insurance on agricultural investments.
Duflo, Kremer, and Robinson (2011) show that providing farmers with a commit-
ment savings technology substantially increased fertilizer use.

34. Farmers may be forced to experiment with modern inputs on a small plot
due to credit and cash constraints. They may also choose to experiment on a small
scale for other reasons. The WTP based on the priors for most farmers in the
sample is below 1. Farmers might thus consider buying for a small part of the
field to reduce their uncertainty about profits, that is, low profitability and high
uncertainty may also constrain the scale of experimentation.

file:qje.oxfordjournals.org
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of return on fertilizer. Inasmuch as access to insurance and credit
markets would reduce the required rate of return, the potential
profits of the seller and hence the incentives to sell authentic fer-
tilizer would increase even further.

To sum up, the results with a higher signal-to-noise ratio sug-
gest that by addressing constraints we know are limiting farmers’
willingness to adopt modern technologies, one can, through affect-
ing the speed and strength of learning and thereby sellers’ incen-
tive to supply high quality, also potentially mitigate the market
for lemons problem in agricultural input markets.

VIII. DISCUSSION

We find that the quality of fertilizers and hybrid seeds sold in
local markets in two of the main maize-growing regions of Uganda
is low on average. Moreover, under reasonable assumptions on
costs, the return to adoption of such substandard inputs is low.
The rate of return of using authentic fertilizer and hybrid seed
is large, however. Together, our results suggest that one reason
smallholder farmers do not adopt fertilizer and hybrid seeds is
that the technologies available in local markets are simply not
very profitable.

We further provide evidence of the learning environment fac-
ing smallholder farmers, showing that farmers can likely infer
that inputs are of poor quality if the quality of the inputs is suf-
ficiently low, but they find it hard to detect whether the large
majority of substandard fertilizers observed in the market place
are profitable. Moreover, we argue that the sellers’ pecuniary in-
centives to build up a high-quality reputation are likely weak, as
farmers cannot distinguish authentic from slightly lower quality
and farmers’ willingness to pay falls relatively little as quality
falls, at least starting at low levels of dilutions. This finding may
help explain why we do not observe sellers selling high quality at
a premium price.

Our findings imply interesting avenues for future research.
Low quality could be due to a multitude of factors, including adul-
teration, poor storage, and inappropriate handling procedures.
Moreover, quality deterioration could manifest at different points
in the supply chain. Anecdotal evidence and news reports suggest
that adulteration, by bulking out fertilizer or dyeing simple grain
to look like hybrid seeds, is common, but more research is needed
to determine if this is indeed the case. Although the exact reasons
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may be irrelevant for a farmer’s decision to adopt, understanding
the determinants of quality is important for policy.35

More generally, our findings highlight the need to identify
ways to substantially increase the quality of basic agricultural
technologies available to smallholder farmers. An obvious follow-
up question to our work is how the rate of technology adoption
and productivity would change if smallholder farmers could access
high-quality inputs and whether adoption rates could be further
boosted by addressing other binding adoption constraints as our
analysis suggests.

The low technology adoption rates in Sub-Saharan Africa are
probably caused by several interrelated factors, as the recent ex-
perimental literature has shown. Importantly, even if farmers’
decisions whether to use fertilizers and hybrid seeds are not pri-
marily constrained by the low quality of the technologies in the
marketplace, low quality has a first-order impact on the income
and welfare of smallholder farmers who adopt. For adopters we
estimate that the loss in revenues, per hectare of land, due to
substandard quality, is US$250 on average, that is, for average
market quality, per season. As a reference, the revenue from tra-
ditional farming, the main source of income for poor smallholder
farmers, per hectare of land and season, is estimated to be just
over US$320.

SUPPLEMENTARY MATERIAL

An Online Appendix for this article can be found at The Quar-
terly Journal of Economics online.

INSTITUTE FOR INTERNATIONAL ECONOMIC STUDIES, STOCKHOLM UNI-
VERSITY, CENTER FOR ECONOMIC AND POLICY RESEARCH

NATIONAL AGRICULTURAL RESEARCH LABORATORIES, KAMPALA

INSTITUTE FOR INTERNATIONAL ECONOMIC STUDIES, STOCKHOLM UNI-
VERSITY, CENTER FOR ECONOMIC AND POLICY RESEARCH
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35. Agricultural technologies such as fertilizer and hybrid seeds form part of
a wider set of products or inputs where quality is not directly observable at the
time of purchase, and only partially observable when used. Anecdotal evidence and
news reports suggest that product quality in markets for experience goods more
broadly is notoriously low in developing countries. Recent work on poor-quality
medicine in developing countries is a case in point (see, e.g., Bjorkman-Nykvist,
Svensson, and Yanagizawa-Drott 2012; Bennett and Yin 2014).
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LEMON TECHNOLOGIES AND ADOPTION 1099

REFERENCES

Anderson, Jonathan M., and John S. I. Ingram, eds., Tropical Soil Biology and
Fertility: A Handbook of Methods (Wallingford, UK: CAB International, 1993).

Beaman, Lori, Dean Karlan, Bram Thuysbaert, and Christopher Udry, “Profitabil-
ity of Fertilizer: Experimental Evidence from Female Rice Farmers in Mali,”
American Economic Review, 103 (2013), 381–86.

Bennett, Daniel, and Wesley Yin, “The Market for High-Quality Medicine,” NBER
Working Paper 20091, 2014.

Besley, Timothy, and Anne Case, “Diffusion as a Learning Process: Evidence from
HYV Cotton,” Princeton Woodrow Wilson School Development Studies Work-
ing Paper 174, 1994.

Bjorkman-Nykvist, Martina, Jakob Svensson, and David Yanagizawa-Drott, “Can
Good Products Drive Out Bad? Evidence from Local Markets for Antimalarial
Medicine in Uganda,” CEPR Working Paper 9114, 2012.

Burke, Marshall, “Selling Low and Buying High: An Arbitrage Puzzle in Kenyan
Villages,” Working Paper, UC Berkeley, 2014.

Conley, Timothy G., and Christopher R. Udry, “Learning about a New Technology:
Pineapple in Ghana,” American Economic Review, 100 (2010), 35–69.

Delavande, Adeline, Xavier Gine, and David McKenzie, “Measuring Subjective
Expectations in Developing Countries: A Critical Review and New Evidence,”
Journal of Development Economics, 94 (2011), 151–163.

Dercon, Stefan, and Luc Christiaensen, “Consumption Risk, Technology Adoption
and Poverty Traps: Evidence from Ethiopia,” Journal of Development Eco-
nomics, 96 (2011), 159–173.

Duflo, Esther, Michael Kremer, and Jonathan Robinson, “Understanding Technol-
ogy Adoption: Fertilizer in Western Kenya, Evidence from Field Experiments,”
Working Paper, MIT, 2006.

———, “How High Are Rates of Return to Fertilizer? Evidence from Field Experi-
ments in Kenya,” American Economic Review, 98 (2008), 482–488.

———, “Nudging Farmers to Use Fertilizer: Theory and Experimental Evidence
from Kenya,” American Economic Review 101 (2011), 2350–2390.

Evenson, Robert E., and Douglas Gollin, “Assessing the Impact of the Green Rev-
olution, 1960 to 2000,” Science, 300 (2003), 758–762.

Foster, Andrew D., and Mark R. Rosenzweig, “Learning by Doing and Learning
from Others: Human Capital and Technical Change in Agriculture,” Journal
of Political Economy 103 (1995), 1176–1209.

———, “Microeconomics of Technology Adoption,” Annual Review of Economics, 2
(2010), 395–424.

Greenberg, Edward, Introduction to Bayesian Econometrics (Cambridge: Cam-
bridge University Press, 2013).

Hanna, Rema, Sendhil Mullainathan, and Joshua Schwartzstein, “Learning
through Noticing: Theory and Evidence from a Field Experiment,” Quarterly
Journal of Economics, 129 (2014), 1311–1353.

IFDC, Malawi Fertilizer Assessment (Alabama: International Fertilizer Develop-
ment Center, 2013).

———, Uganda Fertilizer Assessment (Alabama: International Fertilizer Develop-
ment Center, 2014).

———, Developing Competitive Fertilizer Markets in Africa: Policy Lessons from
FTF Country Assessments (Alabama: USAID and International Fertilizer De-
velopment Center, 2015).

Jack, B. Kelsey, “Constraints on the Adoption of Agricultural Technologies in
Developing Countries,” White paper, Agricultural Technology Adoption Ini-
tiative, J-PAL (MIT) and CEGA (UC Berkeley), 2011.

Jeffreys, Harold, Theory of Probability, 3rd ed. (Oxford: Oxford University Press,
1961).

Kaizzi, Kayuki C., John Byalebeka, Onesmus Semalulu, Isaac Alou, Williams
Zimwanguyizza, Angella Nansamba, Patrick Musinguzi, Peter Ebanyat,
Theodore Hyuha, and Charles S. Wortmann, “Maize Response to Fertilizer



1100 QUARTERLY JOURNAL OF ECONOMICS

and Nitrogen Use Efficiency in Uganda,” Agronomy Journal, 104 (2012), 73–
82.

Karlan, Dean, Robert Osei, Isaac Osei-Akoto, and Christopher Udry, “Agricultural
Decisions after Relaxing Credit and Risk Constraints,” Quarterly Journal of
Economics, 129 (2014), 597–652.

Kass, Robert E., and Adrian E. Raftery, “Bayes Factors,” Journal of the American
Statistical Association, 90 (1995), 773–795.

Mailath, George J., and Larry Samuelson, “Who Wants a Good Reputation?,” Re-
view of Economic Studies, 68 (2001), 415–441.

Munshi, Kaivan, “Social Learning in a Heterogeneous Population: Technology Dif-
fusion in the Indian Green Revolution,” Journal of Development Economics,
73 (2004), 185–213.

Nkonya, Ephraim, Kayuki C. Kaizzi, and John Pender, “Determinants of Nutrient
Balances in Maize Farming System in Eastern Uganda,” Agricultural Systems,
85 (2005), 155–182.

Rosenzweig, Mark, and Christopher Udry, “External Validity in a Stochastic
World,” NBER Working Paper 22449, 2016.

Sanchez, Pedro A, “Soil Fertility and Hunger in Africa,” Science, 295 (2002), 2019–
2020.

Shapiro, Carl, “Consumer Information, Product Quality, and Seller Reputation,”
Bell Journal of Economics, 13 (1982), 20–35.

Sheahan, Megan, and Christopher B. Barrett, “Understanding the Agricul-
tural Input Landscape in Sub-Saharan Africa: Recent Plot, Household, and
Community-Level Evidence,” World Bank Policy Research Working Paper
7014, 2014.

Suri, Tavneet, “Selection and Comparative Advantage in Technology Adoption,”
Econometrica, 79 (2011), 159–209.

Uganda Bureau of Statistics, Uganda National Panel Survey 2011/2012 (Kam-
pala, Uganda: UBOS, 2013).

White, H. L., “A Heteroskedasticity-Consistent Covariance Matrix Estimator and
a Direct Test for Heteroskedasticity,” Econometrica, 48 (1980), 817–838.

World Bank, Agribusiness Indicators: Mozambique, Report Number 68241-MZ,
(Washington, DC: World Bank, 2012).

———, Data retrieved from World Development Indicators Online (WDI) database,
2016.

Wortmann, Charles S., David D. Tarkalson, Charles A. Shapiro, Achim R. Dober-
mann, Richard B. Ferguson, Gary W. Hergert, and Daniel T. Walters, “Nitrogen
Use Efficiency in Irrigated Corn for Three Cropping Systems in Nebraska,”
Agronomy Journal, 103 (2011), 76–84.


