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Technological Innovations, Downside Risk, and the 
Modernization of Agriculture†
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We use a randomized experiment in India to show that improved 
technology enhances agricultural productivity by crowding in modern 
inputs and cultivation practices. Specifically, we show that a new 
rice variety that reduces downside risk by providing flood tolerance 
has positive effects on adoption of a more labor-intensive planting 
method, area cultivated, fertilizer usage, and credit utilization. We 
find that a large share of the expected gains from the technology 
comes from crowding in of other investments. Therefore, improved 
technologies that reduce risk by protecting production in bad years 
have the potential to increase agricultural productivity in normal 
years. (JEL O13, O33, Q14, Q15, Q16)

Productivity growth in the agricultural sector is recognized as an important 
driver of structural transformation and economic growth for poor countries (Gollin, 
Parente, and Rogerson 2002). At the same time, agricultural productivity has been 
hindered by the failure of farmers in developing countries to use high levels of mod-
ern inputs and to adopt improved agricultural practices. Fertilizer is an oft-cited 
example. African farmers use fertilizers at much lower rates than farmers in the 
rest of the world (World Bank 2007). Similarly, farmers in the lowest-productivity 
rice-producing states in Eastern India use less than one-half of the fertilizer of those 
in the higher-productivity states in the country.1

Several explanations for limited modern input use and the failure to adopt 
improved practices have arisen in the literature. These include procrastination and 

1 We used the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) district-level data-
base for all of India to calculate fertilizer use per hectare and rice yield during 2007. The lowest productivity states 
producing a large amount of rice are Odisha, Jharkhand, Chattisgarh, and Assam. Fertilizer use per hectare varies 
from 73 to 110 kg per hectare in these states. In contrast, fertilizer use is over double and productivity is substan-
tially higher in other rice-producing states such as West Bengal and Andhra Pradesh. 
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time-inconsistent preferences (Duflo, Kremer, and Robinson 2011), high transaction 
costs due to poor infrastructure (Suri 2011), lack of information and difficulties in 
learning (Ashraf, Giné, and Karlan 2009; Hanna, Mullainathan, and Schwartzstein 
2014), and absence of formal insurance (Karlan et al. 2014). An additional plausi-
ble explanation—this time on the supply side of technology—is that smallholder 
farmers lack technologies that are well suited to local conditions and therefore factor 
deepening and adoption of other improved agricultural practices are not optimal. Put 
differently, can the availability of new technologies that are better suited to local con-
ditions crowd in additional inputs and investments in other  productivity-enhancing 
practices?

In this paper we answer this question by showing that technological innovation in 
agriculture can itself create a factor deepening effect where improved practices and 
additional inputs are used in response to innovation. Specifically, we study the dis-
semination of an innovative new rice variety that is well suited to local conditions in 
flood-prone areas because its key feature is flood tolerance. The technology reduces 
downside risk by decreasing crop damage during flooding, while at the same time 
leaving production unaffected during normal years.

Our experiment was carried out over two years in the eastern Indian state of 
Odisha. We randomized the distribution of a new rice variety called Swarna-Sub1 
across 128 villages. This seed variety is nearly identical to Swarna, the popular 
high-yielding variety grown in this area, with the only difference being improved 
flood tolerance.2 Prior to the 2011 wet season, a random subset of 5 farmers in each 
of 64 treatment villages were provided a small package of Swarna-Sub1 seed. This 
“minikit” contained only seeds and a short information sheet on the properties of 
Swarna-Sub1. The comparison farmers in the remaining villages were not provided 
with any seeds, as Swarna is widely grown in the area.

In general, our main finding is that this technological innovation leads to not only 
avoided yield losses under flooding but also significant factor deepening and adop-
tion of improved practices as indirect benefits in normal years.3 More specifically, 
we have four sets of findings. First, the new technology induces the moderniza-
tion of farmers’ production practices. During both years, treatment farmers are less 
likely to use the traditional planting method of manually broadcasting seedlings. 
Instead, they are more likely to use the more labor-intensive manual transplantation 
method. Specifically, plots cultivated by treatment farmers are 22 percent less likely 
to be planted using broadcasting in year one. This effect rises to approximately 33 
percent during the second year of the experiment. In addition, plots cultivated by 
treatment farmers are around 14 percent less likely to be cultivated with traditional 
seed varieties that are generally more flood tolerant but lower yielding on average 

2 Elongation is the natural response of the rice plant to flooding. However, the plant loses its stored energy while 
elongating and fails to regrow after floodwaters recede. Swarna-Sub1 represses this elongation response and allows 
the plant to more effectively grow after flooding ends (Xu et al. 2006; Fukao and Bailey-Serres 2008). Excluding 
flood tolerance, Swarna-Sub1 is otherwise genetically identical to Swarna—a fact that has been extensively docu-
mented by agricultural scientists (Neeraja et al. 2007; Bailey-Serres et al. 2010; Mackill et al. 2012). Therefore, the 
technology reduces downside risk by reducing the loss in yield during flooding while leaving it unaffected during 
normal years. This has been shown in agronomic trials (Singh, Mackill, and Ismail 2009). We verify the agronomic 
property of the technology in farmers’ fields using variation in the length of flooding during year one of our study 
(Dar et al. 2013). 

3 We focus our analysis on rice in the wet season because it is the main crop for a vast majority of the sample. 
Due to a lack of irrigation only 20 percent of farmers in the sample grow a dry season crop. 
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than the Swarna variety. Finally, we show some evidence that availability of these 
new seeds causes more area to be cultivated, partly due to decreased fallowing of 
low-lying and low-quality lands during year two.

Second, we show that improved technology crowds in more fertilizer use. 
Conditional on total area cultivated, farmers given access to better technology spend 
around 10 percent more on fertilizer during the second year of cultivation. This effect 
is entirely concentrated on the types of fertilizer that are used earlier in the growing 
season closer to planting time when the risk of crop loss due to flooding is high.

Our third set of findings is on credit usage and savings behavior. Treatment farmers 
are 36 percent more likely to utilize credit during year two. These loans are primar-
ily agricultural loans distributed by local cooperatives early in the growing season. 
This effect can plausibly be explained by either demand or supply-side responses in 
the credit market. That is, the technology decreases the probability of the low pro-
duction state, which could increase the demand for credit. Alternatively, reducing 
downside risk could increase the supply of credit by decreasing default risk. Our 
design does not allow us to distinguish between these alternative mechanisms.4

Farmers given access to improved technology also reduce the share of the harvest 
that is stored for future consumption by five percentage points. A plausible inter-
pretation of this finding is that reducing downside risk with innovation decreases 
the need to store rice in order to protect against future production variability. Two 
facts are consistent with this explanation. First, a simple calculation shows that after 
harvest households set aside more rice than is needed to feed their family for the 
entire year. Second, the effect of the technology on the storage rate is smaller for 
households that are at least partially insured by access to government subsidized 
rice. However, we cannot fully rule out alternative explanations and thus we inter-
pret these results with caution.

Fourth, we quantify the effects of crowd-in on productivity by exploiting the fact 
that the second year of our experiment was a nonflood year. Given that the new and 
old technologies are identical when there is no flooding, there should be no pro-
ductivity effects in the absence of any increased investment by farmers. Instead, we 
show that access to the technology caused rice yield to increase by approximately 
280 kilograms per hectare, or around 10 percent. We consider this to be the overall 
crowd-in effect of the new technology on agricultural productivity.5

How large are these indirect benefits of the new technology when compared to 
the expected agronomic benefits of the technology over time? We use two pieces of 
information to calculate expected agronomic benefits: the measured yield benefits 
obtained on experimental plots conditional on flooding and the average probability 
of flooding for fields in our sample. Starting with the probability of flooding, we 
use GIS coordinates of plots in our sample along with 11 years of satellite imagery 
to approximate the probability that a plot in the sample will be flooded in a given 

4 The supply-side explanation seems more likely given that loan liabilities are often waived by cooperatives after 
years of heavy flooding or drought. 

5 Separating the effect of a new technology into purely technical (agronomic) and crowd-in effects is indeed 
challenging from an empirical standpoint (Beaman et al. 2013). Focusing on new seed varieties in agriculture, the 
only attempt at separating the agronomic benefits from gains due to crowd-in rely on time series decompositions 
where complementary inputs are measured as a total factor productivity (TFP) residual in productivity regressions 
(Evenson and Gollin 2003). 
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year. We find this probability to be approximately 0.19. We combine this with evi-
dence from controlled laboratory experiments showing the maximum yield gain of 
Swarna-Sub1 under flooding to be approximately 2 tons per hectare (Singh, Mackill, 
and Ismail 2009).6 Combining the two estimates, the expected yield gain due to the 
purely technical features of the technology is at most 380 kilograms per hectare. 
This is striking given that crowd-in induces yield gains of around 280 kilograms per 
hectare. Put differently, crowd-in accounts for at least 43 percent of the overall yield 
gains of the new technology.

What is the mechanism that explains why these new technologies generate gains 
through inducing adoption of other inputs and practices? We argue that there are 
three likely channels. First, by reducing losses during flooding, the technology could 
have a direct effect on the marginal product of inputs. This would naturally generate 
factor deepening. Second, there is a downside risk effect which results from the 
fact that the technology increases overall output and income in low-productivity 
states when the marginal product of input use is low. Reducing downside risk in this 
way has the effect of both increasing the expected income (the first moment) and 
reducing the variance of income (the true risk factor). Third, by increasing expected 
income, the technology could generate a wealth effect if farmers’ decisions are 
based on the expected level of output.

While our experiment is not designed to distinguish between these explanations, 
we give suggestive evidence that the risk effect is an important channel. We show 
that effects on decision making exist—but are smaller—on plots that are not culti-
vated with the new technology. This result suggests that shifting input demands due 
to effects on marginal productivity cannot be the only explanation of the results. 
However, this is only suggestive evidence because there is undoubtedly selection on 
the types of plots where the new technology is cultivated. We attempt to reduce such 
selection concerns by including controls for plot characteristics as well as by selec-
tively dropping the lowest-productivity plots of control farmers during this analysis.

We also provide some supporting evidence that the expected income channel 
cannot explain the observed factor deepening. We exploit variation in flood intensity 
during the first year of the study to calculate the duration of the flood shock that 
would generate a change in output that is roughly equivalent to the expected output 
gain of the new technology. This equivalent flood shock should generate effects that 
are of a similar magnitude to our estimated effects if our results are explained by the 
expected income channel. We do not find evidence for this in the data.

Technologies such as this that make staple crops more tolerant to droughts and 
floods are a major recent innovation in agriculture. While the Green Revolution 
benefited much of the world, it is well recognized that rainfed areas that are prone 
to weather extremes benefited much less. The development of technologies that are 
more tolerant to weather extremes is considered to be one of the key components of 

6 This estimate is in the range of estimates from other controlled on-farm trials discussed in Mackill et al. 
(2012). However, this is a very conservative upper-bound estimate for the absolute gains in farmers’ fields because 
baseline yields of farmers in our sample under normal conditions are approximately only 60 percent of those 
observed in controlled on-farm trials. In addition, controlled trials show that the two technologies produce similar 
yields when submergence does not occur (Singh, Mackill, and Ismail 2009). 
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the world’s next Green Revolution (Pingali 2012).7 Our results suggest that a sig-
nificant share of the gains from this type of technological progress will come from 
crowd-in effects where farmers are induced to adopt better agricultural practices and 
other modern inputs.

This paper is the first to consider how improved technology can help close the gap 
between recommended and actual cultivation practices and input use by smallholder 
farmers. In particular, farmers fail to adopt improved practices and use few inputs 
because too often existing seed varieties are not well suited to their local conditions. 
Technological innovations that improve seed varieties and make them better adapted 
to local conditions help solve part of the puzzle of inferior cultivation practices and 
low input use in developing country agriculture.

In addition, our paper presents a new solution to the problem of uninsured risk in 
developing country agriculture. Donovan (2014) uses a general equilibrium model 
to show that uninsured risk explains low intermediate input use in developing coun-
tries. As a result, uninsured risk contributes significantly to cross-country differ-
ences in agricultural productivity. The leading proposed solution is the reduction 
of exposure to risk through weather insurance, particularly index-based insurance. 
Empirical results indeed support the proposition that reducing agricultural risk 
with weather insurance can lead to significant increases in agricultural investment 
(Mobarak and Rosenzweig 2013; Cole, Giné, and Vickery 2013; Karlan et al. 2014; 
Elabed and Carter 2014).

While these studies clearly establish the importance of uninsured risk for agri-
cultural investment, we show the promise of technological progress as a meaningful 
solution to the problem. This is important because the adoption of weather insurance 
has often remained low in the absence of high subsidies (Mobarak and Rosenzweig 
2013; Cole et al. 2013; Dercon et al. 2014; Karlan et al. 2014).8 This begs the ques-
tion of whether there are other instruments that can protect against risk and induce 
greater investment in agriculture. Our results indicate that improved agricultural 
technology can be one such instrument.

Finally, our results make a contribution to the literature on possible adaptations 
to climate change. Model predictions suggest that the risk of weather extremes—
including severe flooding—will become higher as a consequence of climate shocks 
(Milly et al. 2002; Hirabayashi et al. 2013). Our results indicate that new technol-
ogies which increase resilience to these events not only represent a potential pro-
tection from climate shocks, they also create benefits by causing productivity gains 
during normal years.

The rest of this paper is organized as follows. Section I discusses the various chan-
nels through which a risk-reducing seed variety can affect input use. In Section II we 
outline the experimental design and the data collection. Section III presents results, 

7 Indeed, scientists have recently invested heavily in developing new seed varieties that are tolerant to various 
weather stresses. These investments include flood tolerance in rice (Xu et al. 2006; Hattori et al. 2009), drought 
tolerance in rice and maize (Capell, Bassie, and Christou 2004; Karaba et al. 2007; Nelson et al. 2007), and cold 
tolerance in rice (Fujino et al. 2008). 

8 The leading explanations pointed to by the literature are high basis risk with index-based insurance, lack of 
trust in the provider, high loading cost, credit constraints, and insufficient understanding of the concept of insurance 
(Giné, Townsend, and Vickery 2008; Cole et al. 2013; Cai, de Janvry, and Sadoulet 2015). 



1542 THE AMERICAN ECONOMIC REVIEW JuNE 2016

while Section IV focuses on mechanisms that could potentially explain these results. 
Section V concludes.

I. Technological Change and Input Use

In this section we discuss in more detail the mechanisms that could explain our 
findings. Here we focus on the intuition and present the details of our theoretical 
model in online Appendix A. We build on this discussion in Section IV when pro-
viding empirical analysis on potential mechanisms.

There are three mechanisms through which introducing this new technology can 
change input use: an expected income effect, a marginal productivity effect, and a 
risk effect. Focusing on the expected income effect, the technology has a positive 
effect on expected output because it increases output in the flood state but leaves out-
put unchanged in a nonflood year. This could increase input use in two ways. First, 
forward-looking farmers could base input-use decisions off future wealth. Second, 
increasing expected wealth changes the level of absolute risk aversion when prefer-
ences are not constant absolute risk aversion. Most importantly, a factor deepening 
effect would result if preferences exhibit decreasing absolute risk aversion.

The second mechanism is simple technical complementarity between the new 
seed variety and an input. This “marginal productivity effect” would explain addi-
tional input use because adoption of the technology simply coincides with the input 
becoming more productive. Importantly, this effect could arise independently of 
risk. That is, technical complementarity would induce even risk-neutral farmers to 
increase input use in response to the technology. In principle, there is no reason to 
believe that the flood tolerance trait has any effect on the marginal product of inputs 
during the nonflood state.

Third, the technology reduces the riskiness of input use. This downside risk effect 
is large when the new seed increases production in states of nature where the mar-
ginal value of the input is low and thus there are large losses from investing in 
inputs. The intuition for this is that spending on inputs during a flood year turns out 
to be less painful to the farmer because the technology increases production, thus 
partially stabilizing consumption. Importantly, one can show that this risk effect is 
strictly increasing with the coefficient of absolute risk aversion.

II. Experimental Design and Data

In this section we present the details of the experimental design and sampling. In 
addition, we outline the timing of data collection and present summary statistics on 
both village and household characteristics.

A. Experimental Design

Our sample is drawn from villages in flood-prone areas of the Bhadrak and 
Balasore districts of northern Odisha. This area is suitable for the study because 
flood risk is high, Swarna is widely grown, and Swarna-Sub1 was still unavailable 
to farmers in May 2011 when the project was initiated. The villages were identified 
from two sources. In Bhadrak, satellite imagery was matched to a GIS database of 
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villages to identify villages that were affected by flooding.9 A random subset of 
64 affected villages was selected for inclusion in the study. In Balasore, we used a 
list of flood-prone villages established by our local non-governmental organization 
(NGO) partner to randomly select 64 villages.10 Figure 1 displays a map of the 
study area and the villages included. As is seen on the map, almost all of the study 
villages are in low-lying coastal areas.

We first randomly divided the 128 sample villages into treatment and control 
groups. This village-level randomization was stratified by blocks, which are admin-
istrative units that consist of 100–200 villages. The 128 sample villages are spread 
across 8 blocks. A local government official was then visited in all villages to gen-
erate a list of 25 farmers using Swarna and affected by flooding. Using this list, 
5 farmers were randomly selected in each of the 64 treatment villages to receive 
minikits containing 5 kilograms of Swarna-Sub1 seeds.11 The seeds were delivered 
in June 2011, which is right before planting. Our comparison group consists of 
10 randomly selected nonrecipients in treatment villages and 5 randomly selected 
farmers in the 64 control villages.12

In addition to the minikit, treatment farmers were provided with a two-page 
information sheet on Swarna-Sub1. The information sheet had two important com-
ponents. First, we included pictures from farmer-managed trials showing the clear 
productivity gains of Swarna-Sub1 after flooding. Second, the information sheet 
conveyed that other than flood tolerance, Swarna-Sub1 is identical to Swarna. 
Importantly, the sheet did not suggest any management practices such as how to 
plant the field or how much fertilizer to use. Instead, farmers were informed that 
Swarna-Sub1 can be managed exactly like Swarna.

Importantly, several villages in the sample were affected by heavy flooding 
during September 2011. Approximately 40 percent of plots in our sample were fully 
submerged—and detectable with satellite images—during the flood. While inunda-
tion occurred in both districts of the sample, the heaviest flooding occurred in the 
southernmost district of Bhadrak.

The implementing NGO did not provide additional seeds to treatment farmers 
after year one. Given that Swarna-Sub1 seeds were not available on the market, the 
only way to continue using the variety was to save a portion of the year one harvest 
as seeds for cultivation during year two.

B. Data Collection

Our first follow-up survey was conducted in March 2012 after the first year’s 
crop was harvested. A total of 1,248 farmers were reached, achieving a response 
rate of 97.7 percent.13 Compliance with the treatment during the first year was near 

9 We used RADARSAT images (100 m resolution) from 2008 to identify villages affected by flooding. 
10 The satellite imagery of historic floods was not available at the time of village selection. 
11 Five kilograms of seed is sufficient to cultivate 0.1 to 0.2 hectares, or approximately 10 to 20 percent of aver-

age cultivated area. This is the standard minikit size for cereal crops in India. 
12 We show in Table A9 that our main outcomes are not significantly different between nonrecipients in treatment 

and control farmers. Thus, the technology did not generate significant within-village spillover effects. Therefore, we 
retain both sets of nonrecipient farmers in all specifications. 

13 This small level of attrition is balanced across treatment and control. Enumerators were not able to contact 
farmers in one control village due to disagreement with local village leaders about participation in the study. The 
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 universal. Only 2 out of the 320 treatment farmers declined to receive the minikit 
and cultivate it on their land. Treatment farmers cultivated approximately 14 percent 
of their land with Swarna-Sub1.

The second follow-up survey was carried out one year later after the growing 
season for year two. A total of 1,237 of the farmers surveyed during 2012 were 
reached again during this survey. Important outcomes of interest are area cultivated, 
farm-level information on inputs, allocation of output across uses, and credit utiliza-
tion. In addition, a plot-level module on seed variety choice, planting methods, and 
production was administered.

Compliance with the treatment during the second year—defined as continued 
cultivation of Swarna-Sub1—was high. Seventy-six percent of minikit recipients 
cultivated the technology during year two.14 The average number of plots sown 
with Swarna-Sub1 among minikit recipients was 1.5. Average land area cultivated 

results reported are for the remaining 127 villages. 
14 The most common reason for disadoption was crop loss during year one. Swarna-Sub1 is not suitable for 

low areas where water remains stagnant for more than two weeks after flooding (Singh, Mackill, and Ismail 2011). 
Swarna-Sub1 that was planted in these areas during year one was lost. 
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with Swarna-Sub1 was 0.33 hectares, or approximately one-third of average land-
holdings. Conversely, only 10.1 percent of control farmers cultivated Swarna-Sub1 
during year two. We show in Table A1 that this was a direct result of seed transfers 
from original recipients: 13.3 percent of control farmers cultivated Swarna-Sub1 
in treatment villages and only 3.3 percent did so in control villages. Given the low 
levels of  noncompliance across the two years of the study, we take a conservative 
approach and report intention-to-treat (ITT) results throughout the paper.

C. Summary Statistics

Villages in the sample are fairly representative of the low-lying villages in 
the flood-prone states of Bihar, Odisha, and West Bengal. Table 1 shows village 
 characteristics from the 2001 census.15 With the exception of village size, the sam-
ple villages are roughly similar to all villages in low-lying areas of the three states.

Turning to the household-level data from our sample, Panel A of Table 2 reports 
summary statistics of variables that are likely predetermined, but were collected 
during the first follow-up survey. Most importantly, treatment and control house-
holds look similar on most predetermined characteristics. Farms in the sample are 
small. Average landholdings are less than one hectare. While electricity is fairly 
widespread, few households have access to piped water. Most households rely on 
either village or private tubewells for water. Approximately 56 percent of house-
holds have below the poverty line (BPL) cards, which give them access to govern-
ment supports such as a monthly allotment of subsidized rice. Panel B of the table 

15 Villages in the other three states were included if the elevation was below 56 meters, the maximum elevation 
in our sample of villages. 

Table 1—Characteristics of Sample Villages and Other Low-Lying Villages in 
Odisha, West Bengal, and Bihar

In experiment Other villages in 3 states

Number households 177.72 307.66
(175.536) (408.872)

Household size 5.31 5.26
(0.891) (0.843)

Share scheduled caste 0.20 0.23
(0.202) (0.246)

Share scheduled tribe 0.09 0.07
(0.181) (0.183)

Share cultivating land 0.12 0.09
(0.069) (0.067)

Share agricultural laborers 0.06 0.09
(0.066) (0.082)

Literacy rate 0.60 0.51
(0.110) (0.182)

Notes: All data are taken from the 2001 population census. Column 1 pertains to 125 villages 
in Odisha that were part of the experiment. Three of the 128 sample villages were not success-
fully matched to the 2001 census. Column 2 pertains to the other 55,324 villages in Odisha, 
Bihar, and West Bengal that have an elevation of less than 56 meters (the maximum elevation 
of the sample villages). Numbers in parentheses are standard deviations. 
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shows some characteristics of the plots held by farmers in our sample. Farmers 
cultivate an average of around 3.5 plots and one-third of those are in lower-lying 
areas. On average, farmers report that a plot was flooded for around 5.5 to 6 days 
during the first year.

III. Results

This section presents results supporting the argument that improved technology 
modernizes agriculture by increasing the use of modern agricultural practices and 
inputs. We first outline the estimation approach and then present the main results 
on cultivation practices, fertilizer use, rice storage, and credit. We then show that 
the technology leads to substantial gains in land productivity—even in year two 
when there was no flooding. We then benchmark the year two productivity gains 
due to crowd-in against the expected technical gains that arise from flood toler-
ance. Finally, we also consider whether the additional investments that were induced 
translate into profitability gains rather than just productivity gains.

A. Estimation Approach

Our main approach is to use the random distribution of Swarna-Sub1 seeds to 
explain management choices at both the farm and plot level. The baseline specifica-
tion is therefore

Table 2—Mean Values of Household Characteristics and Flood Exposure of 
Plots by Treatment Status

Control Treatment p-value of difference

Panel A. Household characteristics
Land owned in hectares 0.810 0.868 0.22
HH has private tubewell 0.332 0.325 0.82
HH has piped water 0.035 0.057 0.09
HH has refrigerator 0.078 0.076 0.92
HH has television 0.628 0.605 0.46
Education of farmer 6.896 6.946 0.83
Age of farmer 51.191 51.783 0.44
HH has thatched roof 0.557 0.548 0.78
HH has latrine 0.289 0.354 0.03
HH has electricity 0.843 0.822 0.38
HH has below poverty line card 0.574 0.559 0.64
ST or SC 0.189 0.176 0.61

Panel B. Flood exposure of cultivated plots
Share plots low land 0.335 0.357 0.37
Share plots medium land 0.569 0.571 0.94
Share plots high land 0.081 0.067 0.34
Average flood duration in year 1 5.518 5.887 0.23

Joint p-value of household
 characteristics

0.26

Notes: Data are from year 1 follow-up. Values in columns 1 and 2 are means. p-values in col-
umn 3 are based on t-tests of equality of means. ST refers to scheduled tribe and SC refers to 
scheduled caste. The p-value from the joint regression is the p-value from the joint test of all 
covariates when treatment assignment is regressed on all covariates.
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(1)   y  ivb   =  β 0   +  β 1  treatmen t  ivb   +  α b   +  ε ivb  , 

where   y  ivb    is an outcome observed for farmer  i  in village  v  and block  b  , and   α b    is 
a fixed effect for the block, which was a stratification variable for the village-level 
randomization. The error term is clustered at the village level since this corresponds 
to the first tier of randomization. We continue to use the farmer-level treatment indi-
cator when outcomes are observed at the plot level. The estimate of   β 1    in the plot-
level regressions therefore represents an average effect across all plots, not just the 
plots cultivated with Swarna-Sub1.

This intention to treat (ITT) estimate of   β 1    would obviously be attenuated if 
there were either significant disadoption by minikit recipients or adoption by 
 nonrecipients. As we noted above, compliance was nearly 100 percent in the first 
year of the study. Given the small amount of noncompliance during year two, instru-
mental variables estimates of treatment on the treated (TOT) effects would be larger 
by a factor of approximately 1.5. We report the ITT estimates as they carry the most 
policy relevance when dissemination of the new technology naturally leads to some 
disadoption due to imperfect targeting.

We only use the variation generated by the experiment by including only the 
treatment indicator and the strata (block) fixed effects in our main specifications. 
However, we show in Tables A2 to A6 that our main results are unaffected by con-
trolling for household covariates. Finally, when our data allow, we estimate our 
main specifications separately for years one and two.

B. Cultivation Practices and Inputs

The improved technology led to a small expansion in cultivated area. Column 1 
of Table 3 shows that access to Swarna-Sub1 led to an immediate increase in area 
planted of 0.07 hectares or around a 9 percent increase. Panel B shows that this 
effect rose only slightly during year two. Overall, the result suggests that some land 
is left uncultivated due to flooding risk and that improved technologies that address 
this brings this land into production. Also, we show in Table A7 that treatment farm-
ers were significantly less likely to take land out of production (fallowing) during 
the second year, in particular plots that are low-lying and considered to be lower 
quality. The decreased likelihood of taking these flood-prone lands out of produc-
tion partly explains the observed effects on cultivated area during year two. Table A8 
shows that the area effect is driven by cultivation of additional plots, not increased 
area of existing plots.

While Swarna is the most popular rice variety grown in the sample region, farm-
ers often use local “traditional” varieties that are not considered modern and high 
yielding. These varieties have a high capacity to survive during flooding due to their 
ability to rapidly elongate when submerged (Voesenek and Bailey-Serres 2009).16 
We show two pieces of evidence in the online Appendix that flooding risk is one 

16 We have yet to distinguish between flash flooding, where Swarna-Sub1 performs well, and stagnant water 
accumulation. Flash flood areas are those where flooding occurs and water recedes after a period of one day to 
around two weeks. Stagnant water areas are those where water remains partially submerging the crop even after 
floodwaters recede. Our findings in Dar et al. (2013) and other research (i.e., Singh, Mackill, and Ismail 2011) show 
that Swarna-Sub1 does not tolerate stress due to stagnant water of more than approximately 15 days. 
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of the reasons this traditional technology is still used. First, when asked, farmers 
directly state that one of the main reasons for adopting these varieties is their toler-
ance to flooding (see Figure A1). Second, in Figure A2 we show that these varieties 
had higher survival rates in heavily flooded areas during year one.

Not surprisingly, column 3 of Table 3 shows that plots cultivated by treatment 
farmers were less likely to be sown with Swarna by 15.7 percentage points and 10.1 
percentage points in years one and two, respectively. More interestingly, there was 
an immediate reduction in the use of traditional varieties by 2.9 percentage points 
(14 percent) during year one and 4.1 percentage points (or 14.6 percent) during year 
two (column 4). Thus, the crowding out of traditional varieties is one of the channels 
through which the innovation affects output.

In addition to modernization of seed varieties, the technology also led to a mod-
ernization of planting methods. Column 5 shows that farmers given access to the 
improved technology were less likely to opt for the cheaper, less productive, and tra-
ditional planting method of manually broadcasting seeds. Instead, treatment farmers 
were more likely to use the more labor-intensive method of manually transplanting 
seedlings.17 Panel A shows that plots cultivated by treatment farmers were 2.2 per-
centage points (around 22 percent) less likely to be sown using the  broadcasting 
method during year 1. During year 2, this effect rose to 6.3 percentage points, or 
around 33 percent.

17 Transplanting involves raising seedlings on a small portion of land, pulling and bundling the seedlings after 
approximately three weeks, and planting the seedlings manually in the main field. While broadcasting is a popu-
lar planting technique in flood-prone areas due to a lower labor requirement, increased competition from weeds 
reduces yields (Khush 1997; Rao et al. 2007). 

Table 3—Effects on Cultivation Practices

Area planted log area Use Swarna Use TV Broadcast
(1) (2) (3) (4) (5)

Panel A. Year 1
Original minikit 0.068 0.088 −0.157 −0.029 −0.022
 recipient (0.045) (0.048) (0.018) (0.016) (0.012)

Block fixed effects Yes Yes Yes Yes Yes
Mean of dependent variable 0.92 −0.36 0.47 0.21 0.10
Observations 1,248 1,238 4,215 4,214 4,221
R2 0.167 0.197 0.129 0.153 0.094

Panel B. Year 2
Original minikit 0.109 0.098 −0.101 −0.041 −0.063
 recipient (0.056) (0.044) (0.017) (0.016) (0.017)

Block fixed effects Yes Yes Yes Yes Yes
Mean of dependent variable 1.00 −0.20 0.36 0.28 0.19
Observations 1,237 1,175 4,589 4,588 4,582
R2 0.112 0.161 0.115 0.270 0.242

Notes: Dependent variable is total rice area planted in hectares (column 1), log of total rice area (column 2), an indi-
cator for using Swarna on the plot (column 3), an indicator for using a traditional seed variety on the plot (column 
4), and an indicator for planting the plot using the broadcasting technique (column 5). The observations are at the 
farmer level in columns 1 and 2 and at the plot level in columns 3 through 5. Standard errors that are clustered at 
the village level are reported in parentheses.
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Improved technology also induced greater fertilizer use during year two.18 
Column 1 of Table 4 shows that conditional on cultivated area, total fertilizer expen-
ditures rose by 397 Rs or 10.5 percent for treatment farmers. Columns 2 through 5 
show that this increase in fertilizer expenditure is almost entirely concentrated on 
phosphate (DAP) and potassium (MOP) fertilizers. We show in Figure A3 that phos-
phate and potassium fertilizers are generally used earlier in the growing  season.19 
Combining these two facts, the improved technology resulted in increased fertilizer 
use only for fertilizers that are used earlier in the growing season when the risk of 
exposure to flooding is highest. This provides further evidence that this technology 
led to additional investment near planting time and helped close the gap between 
actual and recommended fertilizer application.20

C. Storage and Credit

Farmers in the sample store large amounts of rice after each harvest relative to 
their annual consumption. The average total rice harvest amongst cultivators in our 
sample was 2,945 kg. An average of 1,711 kg of the harvest was consumed or set 
aside for future consumption.21 This amount is enough to feed roughly 11 adults for 

18 Our first follow-up survey only included fertilizer use on the Swarna-Sub1 plot of treatment farmers and the 
largest Swarna plot of control farmers. Due to plot selection issues, we do not use these data to estimate effects on 
fertilizer usage. 

19 This is also consistent with basic agronomic recommendations based on the functions of the different nutri-
ents. In particular, phosphorous (DAP) and potassium (MOP) contribute mostly to soil conditioning and root devel-
opment, and are applied early in the growing season. In contrast, nitrogen—in the form of urea—contributes to 
healthy plant and leaf development and therefore is mostly applied later in the season after the plant is more fully 
developed and leaf growth is occurring. 

20 Fertilizer application in our sample is still below recommendations in spite of high subsidies. An approximate 
recommendation for our sample area is a per-hectare application of 80 kilograms of nitrogen (N), 40 kilograms 
of phosphorous (P), and 40 kilograms of potassium (K). The median farmer in the control group during year two 
applied 57.8 kg of nitrogen, 34 kg of phosphorous, and 15.5 kg of potassium for each hectare of land cultivated. In 
contrast, the median farmer in the treatment group applied 59.7 kg of nitrogen, 39.1 kg of phosphorous, and 18.3 kg 
of potassium. 

21 Since our survey was conducted shortly after the harvest and postharvest production practices, most of the 
amount indicated for consumption had yet to be consumed at the time of the survey. 

Table 4—Effects on Fertilizer Usage during Year Two, Conditional on Cultivated Area

All Urea DAP MOP Gromor
(1) (2) (3) (4) (5)

Original minikit recipient 396.703 13.428 393.768 90.579 −101.073
(179.631) (34.372) (136.410) (58.170) (67.759)

Rice area (hectares) 3,835.891 694.814 2,288.634 623.535 228.909
(315.559) (108.483) (253.521) (132.287) (66.481)

Block fixed effects Yes Yes Yes Yes Yes
Mean of dependent variable 3,781.48 664.70 2,016.80 702.82 397.15
Observations 1,237 1,237 1,237 1,237 1,237
R2 0.619 0.496 0.526 0.279 0.064

Notes: Dependent variable is fertilizer expenditure in rupees. The column labels indicate the type of fertilizer. All 
observations are from year two of the experiment and are at the farmer level. Standard errors that are clustered at 
the village level are reported in parentheses. 
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a year.22 Average household size in the villages in our sample is 5.3 persons. While 
we acknowledge that stored rice is a liquid asset that can be sold upon family need, 
one plausible explanation for this large amount of rice storage is the need to insure 
against future consumption variability.

Farmers receiving Swarna-Sub1 store a smaller share of their harvest for future 
consumption. Column 1 in Table 5 shows that after year one, treatment farmers 
stored 2.6 percentage points less output for consumption. While this effect is not 
quite statistically significant, panel B shows that the effect after year two rises to 5 
percentage points and is statistically significant.23 The magnitude of the effect is not 
trivial. It amounts to approximately 150 kilograms, or enough to meet the consump-
tion needs of 1 household member for the entire year. Column 2 of panel B shows 
that the storage effect during year two is concentrated among households who do 
not hold below the poverty line (BPL) cards. BPL cards serve as consumption insur-
ance because they entitle households to purchase 30 kilograms of rice per month—
an amount that is enough to feed approximately two adults—at highly subsidized 
rates.24 This additional heterogeneity is consistent with the technology decreasing 
the need to use storage as a form of consumption insurance.

In addition to reducing storage rates, improved technology that reduces downside 
risk increases the uptake of agricultural credit. Columns 3–5 of Table 5 focus on 
binary indicators of household access to credit. Column 3 shows that credit uptake 
increased by 6.3 percentage points immediately during year 1, but the effect is not 
statistically significant at conventional levels. Given average credit uptake of 43 
percent, this effect amounts to about a 15 percent increase. Average uptake of new 
loans across the entire sample was much smaller (19 percent) during year two. 
However, column 3 in Panel B shows that treatment farmers were 6.8 percentage 
points more likely to take out a new loan during the time between planting and 
harvesting for year two. This amounts to a meaningful 36 percent increase in credit 
uptake. Columns 4 and 5 show that a large portion of the effect is driven by loans 
originating from agricultural cooperatives.

In contrast to inputs, the results on rice storage and credit uptake are unlikely to be 
explained by shifts in the marginal productivity of inputs. Rather, storage offers insur-
ance against low or zero production during flooding. By increasing the overall level of 
production during flooding, the technology substitutes directly for storage. Utilization 
of agricultural credit increases either due to a demand effect where the increase in 
expected production in the future makes borrowing more desirable, or a supply effect 
where credit constraints are a function of the borrower’s expected production.25

22 This calculation is based on an average annual consumption in rural Odisha of 158 kilograms per capita per 
year, as reported in the sixty-fourth round of the National Sample Survey. 

23 A similar regression where the dependent variable is the share of rice sold delivers a coefficient estimate of 
0.047. Thus, much of the output that was not stored for consumption was instead sold. 

24 The price of BPL rice is 1 to 2 Rs per kilogram while the market price of similar rice is 20 Rs or higher. 
25 Also, increased uptake of credit could play a role in decreasing savings of stored rice: additional credit could 

further crowd in input use at planting, which increases output and decreases the need for precautionary savings 
(Fulford 2013). 
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D. Effects on Productivity

The results indicate that improved technology induces the adoption of several 
other modern inputs and management practices. A natural next question is to ask 
how these changes translate into productivity gains.

There is a noticeable increase in yield for plots cultivated by farmers with access 
to Swarna-Sub1. Figure 2 displays the estimated kernel densities of yield by treat-
ment status for both years of the study. Focusing on year one, the severe flooding 
in part of the sample is apparent as there is a significant mass of the distribution at 
low yields. However, there is also a clear rightward shift in the distribution of yield 
for treatment farmers. This effect is a combination of the purely technical gains in 
flooded areas with the gains due to the small crowd-in effects reported above.

Panel B shows that there is a clear rightward shift in the distribution for treatment 
farmers during year two when flooding did not occur. This effect occurs throughout 
the distribution of yield, suggesting that it is not concentrated on the lowest or high-
est productivity farmers.

The regression results in Table 6 are consistent with the graphical evidence. 
Column 1 shows that the technology led to an increase in yield during year one of 
315 kilograms per hectare, or around 14 percent. In year two, when flooding did not 
occur and all productivity gains are due to crowd-in, treatment farmers harvested 
an average of 283 kilograms more per hectare cultivated. This translates into a 10 
percent increase in productivity.

Table 5—Effects on Rice Storage and Credit Uptake

Storage rate Storage rate Loan Coop loan Other loan
(1) (2) (3) (4) (5)

Panel A. Year 1
Original minikit −0.026 −0.016 0.063 0.033 0.030
 recipient (0.015) (0.027) (0.039) (0.028) (0.032)
Original minikit −0.017
 recipient*HH has BPL card (0.034)

Block fixed effects Yes Yes Yes Yes Yes
Mean of dependent variable 0.73 0.73 0.43 0.24 0.19
Observations 1,183 1,180 1,248 1,248 1,248
R2 0.113 0.117 0.122 0.154 0.055

Panel B. Year 2
Original minikit −0.050 −0.085 0.068 0.050 0.023
 recipient (0.017) (0.024) (0.027) (0.024) (0.019)
Original minikit 0.061
 recipient*HH has BPL card (0.031)

Block fixed effects Yes Yes Yes Yes Yes
Mean of dependent variable 0.70 0.70 0.19 0.12 0.08
Observations 1,167 1,164 1,237 1,230 1,237
R2 0.070 0.073 0.058 0.057 0.014

Notes: Dependent variable is the share of the total rice harvest that was stored for future con-
sumption (columns 1 and 2), an indicator for having a loan (column 3), an indicator for hav-
ing a loan from an agricultural cooperative (column 4), and an indicator for having a loan from 
another source (column 5). Other sources are banks, input sellers, self-help groups, microfi-
nance institutions (MFI), friends/relatives, or money lenders. Standard errors that are clus-
tered at the village level are reported in parentheses. 
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Table 6—Effects on Productivity

Year 1 Year 2

(1) (2) (3) (4) (5)

Original minikit recipient 314.97 283.45 230.30 196.54 169.14
(86.28) (77.48) (73.73) (68.06) (64.84)

Broadcast planting −801.22 −679.36 −419.08
(129.45) (117.53) (108.50)

Tons fertilizer per hectare 4,350.39 3,237.30
(997.70) (831.35)

Tons fertilizer per hectare      2   
−4,025.26 −2,942.84
(1,628.52) (1,266.48)

Traditional variety −442.46
(70.86)

Irrigated 711.64
(92.21)

Has credit 150.79
(69.04)

Block fixed effects Yes Yes Yes Yes Yes
Mean of dependent variable 2,213.39 2,817.97 2,819.53 2,819.53 2,819.13
Observations 4,184 4,573 4,568 4,568 4,514
R2 0.409 0.159 0.200 0.236 0.302

Notes: Dependent variable in all regressions is yield in kg/hectare. Estimation data are at the plot level. Broadcast 
planting, traditional variety, and irrigated are measured at the plot level; fertilizer per hectare and credit are mea-
sured at the farmer level. Standard errors that are clustered at the village level are reported in parentheses. 

0

0.00005

0.0001

0.00015

0.0002

D
en

si
ty

0 2,000 4,000 6,000 8,000

Yield in kg/hectare

Minikit Nonrecipient

Panel A. Year 1

0

0.0001

0.0002

0.0003

D
en

si
ty

0 2,000 4,000 6,000 8,000

Yield in kg/hectare

Panel B. Year 2
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regardless of seed variety choice on those plots. The solid lines are densities for all plots cultivated by control 
farmers.
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As a method of investigating whether the crowd-in effect is a channel through which 
improved technology affects productivity, we sequentially add our main outcome 
measures as regressors to the yield equation. Adding these endogenous outcomes as 
controls should attenuate the reduced-form productivity effect if the effect is partly 
operating through these channels.26 Of course, the coefficients on the endogenous 
outcome variables represent merely correlations and cannot be interpreted causally.

The conditional productivity effect is substantially lower than the unconditional 
effect. Columns 3–5 of Table 6 show that accounting for the observed changes in 
production practices substantially attenuates the productivity effect. In addition, the 
goodness of fit of the regression approximately doubles. Therefore, the crowd-in 
effect is an important determinant of the overall productivity effect of the technology.

How large are these indirect effects of the new technology? We next benchmark 
this crowd-in effect against the expected yield gains from controlled laboratory 
experiments on agricultural experiment stations. Agronomic benefits reported by 
experimental stations are importantly measured while input use is held constant and 
thus the only advantage of the improved technology occurs through its technical 
superiority. Singh, Mackill, and Ismail (2009) show that the maximum yield benefit 
of Swarna-Sub1 under 12 days of flooding is approximately 2 tons per hectare. In 
addition, the absolute magnitude of the yield benefit in farm-trials declines as flood 
severity worsens beyond 12 days.

To generate the probability that a field in our sample would be flooded during 
the wet season, we use satellite imagery from past flooding. We used imagery of all 
flooding in the two districts from 2002 to 2008 and 2011 to 2014 to identify areas 
affected by flooding.27 We overlaid these flood areas with the GIS centroid of 1,123 
plots cultivated by farmers in our sample. These GIS coordinates were collected 
for the Swarna-Sub1 plot of treatment farmers and the largest Swarna plot of con-
trol farmers. Figure 3 shows the distribution of flooding for these plots across the 
11 years for which we had satellite imagery. Notably, the most severe flood year 
was 2011, the first year of the experiment. Approximately 40 percent of plots were 
detected as flooded using the satellite images during 2011. Also, there was almost 
no flooding during the following year: only 2 percent of plots were detected as 
flood-affected during 2012.

The overall average probability of flooding across the 11 years is 0.19, which is 
the horizontal line displayed in Figure 3. This average probability is similar across 
the Swarna and Swarna-Sub1 plots. Combining this with the estimated yield advan-
tage of 2 tons per hectare during flooding, 380 kg per hectare is a very conservative 
upper-bound estimate of the expected technological gains due to agronomy. Thus, 
we estimate that the 283 kilogram per hectare gain due to crowd-in effects rep-
resents no less than 43 percent of the overall gains from the innovation.

An implication of this finding is that estimated returns of new technologies that do 
not account for how farmers reoptimize their decisions will significantly  understate 

26 This approach has been used to investigate the channels through which education affects voting (Milligan, 
Moretti, and Oreopoulos 2004) and the channels through which early-life rainfall shocks affect outcomes later in 
life (Maccini and Yang 2009). In our case the reduced-form treatment effect that remains after conditioning on 
inputs can be thought of as a measure of TFP. 

27 These data come from the MODIS satellite and have a resolution of 250 M (http://floodobservatory.colorado.
edu/Modis.html. A more detailed description of the data is available on this website).

http://floodobservatory.colorado.edu/Modis.html


1554 THE AMERICAN ECONOMIC REVIEW JuNE 2016

the gains from new technologies. In addition, this result further demonstrates the 
value of using field experiments to measure the impacts of new agricultural technol-
ogies. Studies on experimental plots that don’t account for reoptimization of farmers 
will not deliver the true causal effects of new technologies.

Including these productivity effects, we have shown that the flood-tolerant 
rice variety has significant impacts on several outcomes of interest. However, we 
have thus far only considered the outcomes individually and have not adjusted the 
 p-values for multiple inference. In Table A10 we show all regression results for 
the 20 agricultural outcomes measured by our second year follow-up survey. More 
importantly, we show that adjusting p-values for multiple inference by controlling 
the false discovery rate does not significantly alter the conclusions of our hypothesis 
tests (Benjamini, Krieger, and Yekutieli 2006; Anderson 2008).

E. Are Additional Investments Profitable?

We have shown that increased investment is an important channel through which 
improved agricultural technologies lead to substantial gains in productivity. In 
 particular, average yield of farmers given access to flood-tolerant rice increases by 
around 283 kg per hectare (Table 6). This amounts to an increase in revenue per 
hectare of 2,969 Rs when applying the average output price from our survey of 10.5 
Rs per kg. However, the increased investments that drive this increase, such as using 

Figure 3. Distribution of Flooding for Sample Plots, 2002–2008 and 2011–2014

Notes: Figure shows the distribution of flooding across time for 1,123 plots that were cultivated by farmers in our sam-
ple during year one of the study. The height of each bar is the share of the 1,123 plots that were flooded at least once 
during the relevant season. Satellite imagery from MODIS for the years 2002–2008 and 2011–2014 were matched 
with the GIS coordinates of the plot to determine whether a given plot was flooded in each year. The horizontal dashed 
line represents the overall probability of flooding for plots in the sample, which is 0.19 across the 11 years.
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more fertilizer or changing planting techniques, are indeed costly. Therefore, the 
gains in profitability are undoubtedly lower than the measured productivity gains.

Additional calculations suggest that the incremental costs associated with the 
observed management changes represent less than half of the gains in revenue. We 
estimate that the cost increase resulting from the observed changes in management 
is around 1,103 Rs per hectare. This represents only 37 percent of the estimated 
revenue gains and therefore suggests that the technology does lead to gains in prof-
itability. We explain the details of this calculation in online Appendix B.

IV. Mechanisms

Our results suggest that an improved technology that decreases the downside risk 
of production causes farmers to reoptimize along several dimensions. While the 
results are consistent with reducing risk being one of the important mechanisms, 
there are some other equally plausible explanations. In this section we consider 
some alternative tests to investigate whether the data are consistent with these expla-
nations. Importantly, these tests cannot definitively point to risk as the only explana-
tion of our findings. We are therefore cautious to interpret the findings as suggestive 
that nonrisk mechanisms are not entirely consistent with the data.

A. Shifts in the Marginal Productivity of Inputs

Returning to the discussion above, the marginal productivity effect is one of the 
channels through which introducing a risk-reducing seed variety could influence 
input use. If the new variety is a technical complement to an input like fertilizer, 
then the variety could naturally increase fertilizer use independent of its risk-reduc-
ing property. We attempt to rule this out as the only explanation for our results by 
considering plots that were cultivated by treatment farmers, but were not cultivated 
with Swarna-Sub1. We estimate our main effects on this subsample of plots. If the 
results are explained by how the technology itself changes the marginal productivity 
of these inputs, then there is no reason to expect any effects on these plots.

While the effects are smaller, the effects on productivity, broadcasting, and DAP 
fertilizer expenditures all persist on plots where Swarna-Sub1 was not used. Column 
1 of Table 7 shows a yield effect of 173 kilograms per hectare, or approximately 
6 percent. Columns 2 and 3 show that there is no substitution away from other rice 
varieties on these plots, suggesting that any effects on inputs are not due to which 
varieties were grown.28 Column 4 shows that there remains a 4.2 percentage point 
decrease in the probability of using broadcasting by treatment farmers on the plots 
not cultivated with the new technology. Finally, plot-level expenditures on DAP fer-
tilizer are higher by around 100 Rs for treatment farmers on non-Swarna-Sub1 plots 
(column 6). In combination, these results help to rule out the mechanism where the 
new technology simply increases the marginal products of inputs.

However, an important concern with this approach is the endogeneity of plot 
choice. If treatment farmers allocated Swarna-Sub1 to their worst lands, then the 

28 Table A11 shows that the results are robust to controlling for variety fixed effects. 
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treatment-control comparison on the remaining plots would artificially favor finding 
effects of treatment on these outcomes.29 As the first approach to reducing these 
selection concerns, Table 7 includes controls for self-reported land quality, relative 
elevation (or slope) of plots, land ownership, and area of the plot. The main effects 
in the table are therefore all conditional on these potential sources of selection.

We address concern about selection on unobservables by constructing a sim-
ple simulation to assess the degree to which these results could be driven by plot-
level selection. Treatment farmers cultivate on average 0.235 fewer plots with 
 non-Swarna-Sub1 varieties. This is fairly modest since control farmers cultivate an 
average of 3.6 plots with these same types of varieties. We construct a simulation 
where we take each control farmer in the sample and randomly drop one of their 
plots with a probability of 0.235. We make the simulation exercise as conservative 
as possible by generating a random number from the unit interval for each con-
trol farmer and dropping their lowest-yielding plot if that random number is less 
than 0.235. This results in a trimmed sample where 184 plots are dropped from the 
 analysis. Importantly, trimming balances the total number of plots across treatment 
and control farmers in a way that can only reduce the treatment effect.

We show in Table A14 that while conservatively trimming the sample in this 
way decreases the main coefficients of interest, the estimates remain statistically 

29 We show in Table A12 that the plots cultivated with Swarna-Sub1 were on average smaller, more likely to be 
land that was owned by the farmer rather than sharecropped and less likely to be on the lowest land in the village. 
However, Table A13 shows that the plots not cultivated with Swarna-Sub1 are roughly similar on these observables. 
A plausible explanation that reconciles these two results is that minikit recipients cultivated more plots as a result 
of obtaining the new technology. While those new plots were on average different than the other plots, this does not 
affect the remaining non-Swarna-Sub1 plots. 

Table 7—Effects Estimated for Sample of Fields Not Cultivated with Swarna-Sub1

Fertilizers

Yield Use Swarna Use TV Broadcast All DAP
(1) (2) (3) (4) (5) (6)

Original minikit recipient 172.901 −0.008 0.023 −0.042 63.022 100.389
(77.156) (0.021) (0.018) (0.019) (57.614) (47.962)

Area of plot −223.539 0.006 0.023 0.033 3,538.521 2,094.537
(121.532) (0.039) (0.037) (0.035) (371.851) (263.348)

Owned land 34.201 0.062 −0.025 0.055 119.388 87.608
(66.644) (0.020) (0.018) (0.018) (63.060) (43.477)

Block fixed effects Yes Yes Yes Yes Yes Yes
Land quality indicators Yes Yes Yes Yes Yes Yes
Land slope indicators Yes Yes Yes Yes Yes Yes

Mean of dependent variable 2,757.37 0.40 0.32 0.20 1,098.14 590.57
Observations 4,087 4,087 4,086 4,082 4,087 4,087
R2 0.18 0.15 0.31 0.27 0.52 0.43

Notes: Data consist of entire sample of plots not cultivated with Swarna-Sub1 during the second year of the study. 
The dependent variables are rice yield in kg/hectare (column 1), an indicator for planting the field with Swarna 
(column 2), an indicator for planting the field with a traditional rice variety (column 3), an indicator for planting 
using the broadcasting technique (column 4), and total fertilizer expenditures in rupees (columns 5–6). Standard 
errors that are clustered at the village level are reported in parentheses. 
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significant at least at the 10 percent level. This provides suggestive evidence that the 
comparison of non-Swarna-Sub1 plots across treatment and control farmers is not 
being driven entirely by plot selection.

B. Changes in Mean Yield Rather than Variance

The technology we study decreases downside risk without affecting yield during 
“good years” when flooding is absent. As a result, the technology both decreases 
the variance in output and increases mean yield. One potential explanation of our 
findings is that they could be driven by this income effect where the expectation of 
increased output at the end of the season changes agricultural decision making. The 
ideal experiment to decompose between these two channels would involve prom-
ising compensation to control farmers in the amount equal to the gain in expected 
output from Swarna-Sub1. This gain in expected output depends on both the yield 
advantage of Swarna-Sub1 and the total land area cultivated with it. It is important 
to note that compensating control farmers before planting in the amount equal to 
the expected output gain is likely conservative because of discounting, the increased 
certainty of compensation relative to uncertain productivity gains in the treatment 
group, and the liquidity value of having additional capital before planting.

We exploit natural variation in our data to simulate an experiment where com-
pensation is provided before planting. During the first year of the study there was 
spatial variation in the intensity of flooding, even within fairly small geographic 
areas. We use this variation to generate a measure of the flood shock (or lack 
thereof) that would have been equivalent to the gain in expected output caused 
by Swarna-Sub1. Our calculation in Section IIID suggested that an upper-bound 
estimate for the purely agronomic gain of Swarna-Sub1 was 380 kg per hectare. 
Combining this with the fact that treatment farmers cultivated an average of 0.33 
hectares with Swarna-Sub1 during the second year, the required compensation to 
turn off the expected output channel would be equivalent to 126.7 kilograms of 
rice. Table A15 shows that an additional day of flood exposure during the first year 
caused the total production of control farmers to decrease by 90.3 kg. Therefore, 
a decrease in flood exposure by 1.4 days is equivalent to the expected output gain 
from Swarna-Sub1. If our results are entirely driven by the mean-increasing prop-
erty of the technology, then we would expect the effects of being exposed to 1.4 
fewer flood days for control farmers to be equivalent to our measured effects of 
giving the new technology.

The results do not appear to be entirely driven by the mean-increasing property 
of Swarna-Sub1. Table A16 compares the main effects of the Swarna-Sub1 treat-
ment with the effects of an equivalent flood shock in the control group—which is 
the farmer’s area-weighted flood exposure divided by 1.4. Total fertilizer expendi-
ture is the only outcome that decreases significantly with an additional 1.4 days of 
flood exposure. However, the negative effect of an additional 1.4 days of flooding is 
around one-fifth the size of the effect of the Swarna-Sub1 treatment. While this test 
is imperfect because it relies on nonexperimental variation, the results are mostly 
inconsistent with our results being driven by how the technology shifts the mean 
level of output.
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C. Other Alternative Explanations

An additional potential income effect is that cultivation of the new seed vari-
ety during year one led to a boost in agricultural income which then crowded in 
improved inputs and practices during the following year. Our results do not appear 
consistent with this explanation for two reasons. First, the fact that we observe mod-
erate impacts immediately during year one suggests that wealth effects from crop 
output during year one do not entirely explain our results during year two. Second, 
as another piece of evidence, we use data on the total quantity of rice harvested 
during the first year as a measure of the wealth that would have been influenced by 
being treated. If increases in wealth due to the new technology led to the changes 
we observe during year two, then controlling for the year one harvest should atten-
uate our main estimates. We show in Table A17 that none of our main estimates are 
affected when conditioning on the year one total harvest.

Are differences in output prices responsible for our results? We collected infor-
mation on prices received by variety from each farmer that sold any output after 
the second year of the study. The average price received for Swarna was 10.29 Rs 
per kilogram and the average price received for Swarna-Sub1 was 10.76.30 This 4.6 
percent difference in prices is statistically significant at the 5 percent level. Since 
the eating quality of the two varieties is similar (see Figure A1), this difference in 
prices could possibly be due to increased value of output as seed rather than grain 
for consumption.

There is no evidence that output prices drive the results. Descriptively, only 40 
percent of farmers sold any rice following the second year and on average only 17 
percent of the harvest was sold as grain for consumption, suggesting that effects of 
output price differences are likely to be small. We consider this possibility further 
by separate estimation of the main results for the subsample of farmers that did not 
sell any rice following the second year.31 If prices are explaining the results, then 
the effects of the technology should be smaller in this subsample. We show in Table 
A18 that this is not the case. This evidence is not consistent with output prices being 
the relevant channel for our results.

V. Conclusions

This paper has shown that technological progress in agriculture can have the 
important effect of crowding in the use of both more productive cultivation prac-
tices and modern inputs. This suggests that lack of more productive and resilient 
technology can be at least a partial reason why smallholder farmers in developing 
countries often fail to adopt improved production practices and use few modern 

30 The government’s paddy procurement program set the minimum support price (MSP) for the 2012 harvest at 
12.5 Rs per kilogram. Many farmers in our sample sell instead to private traders at prices below this level. 

31 A problem with this approach is that the sample is being split according to an endogenous outcome. The most 
plausible effect of sample selection in this case is that the group of farmers selling rice are the largest and wealthiest 
farmers who have the most capacity to respond after having access to Swarna-Sub1. For instance, average landhold-
ings of farmers that do not sell output are 50 percent less than the landholdings of those selling output. This would 
then work against us finding any effects in the subsample of farmers not selling output. 
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inputs. We have focused on new rice varieties that reduce downside risk through 
enhanced flood tolerance.

Additional calculations suggested that much of the gains from these new technol-
ogies come from this crowding-in effect. By inducing more use of a labor-intensive 
planting method, increased investments in fertilizer, increased uptake of credit, and 
displacing traditional seed varieties, technology boosts productivity. Put differently, 
the absence of seed varieties that are well adapted to local conditions causes farmers 
to opt for traditional low-input and low-productivity cultivation strategies. Our best 
estimate indicates that no less than 43 percent of the expected productivity gains 
from seed varieties that reduce downside risk can be attributed to crowd-in effects.

These results provide the first evidence on how technological progress that reduces 
downside risk in agriculture can modernize farming in areas where production risk 
is high. While the technology in our experiment has already been adopted by around 
3 million farmers in India alone (Ismail et al. 2013), technological progress that 
makes seed varieties more tolerant to weather extremes is not unique to India. Since 
2011, new rice varieties that are tolerant to either flooding, drought, or extreme cold 
temperatures have been released in 11 countries in South Asia and Africa alone.

These results suggest that efforts to improve technology by reducing the suscep-
tibility of commonly used crop varieties to weather extremes can go a long way in 
increasing agricultural productivity. While the Green Revolution was successful at 
increasing agricultural productivity in favorable areas throughout the world, pro-
ductivity in rainfed areas under weather stress remains low. Using flood tolerance 
as an example, we have shown that technological advances that improve resilience 
to climatic events can further enhance agricultural productivity by causing farmers 
to reoptimize their production practices. Not accounting for this reoptimization as 
a result of technological change leads to a large underestimation of the return from 
investing in research and development in agriculture.
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