In recent years, climate change has increased the likelihood of extreme weather events such as floods, droughts, and heatwaves. Floods, for example, affect approximately 21 million people each year, primarily in developing countries. India is the country most affected by flooding, with an average of 4.8 million people exposed to flood risk each year. These extreme weather events are particularly challenging for smallholder farmers who have few resources to cope with them. For farming households, these events can substantially reduce income, and they may also make farmers less willing to invest in their farms. In the face of weather shocks, farmers often self-insure against losses by cultivating crops that have stable but low yields. They may also forgo profitable investments, such as fertilizer or improved seeds, for fear that these purchases will not pay off in the event of a flood or drought. These seemingly safe choices lead to lower productivity, yields, and profits during years with typical weather. Indeed, lower investment in agricultural inputs contributes substantially to the large gap in agricultural productivity between developing and developed countries.

Scientists have developed several stress-tolerant crops to help farmers better manage weather risk. These are breeder-selected varieties of common seeds that maintain high yields if a drought or flood occurs. These seeds have been developed relatively recently, so there is limited evidence on whether they can help insure against agricultural risk. Working in partnership with the International Rice Research Institute (IRRI), researchers Manzoor Dar (IRRI), Kyle Emerick (Tufts), Alain de Janvry (UC Berkeley), and Elisabeth Sadoulet (UC Berkeley) conducted a randomized evaluation to study the effects of a flood-tolerant rice variety, Swarna-Sub1, on rice yields and farmer behavior in Odisha, India.

Swarna-Sub1 avoided yield losses. Access to Swarna-Sub1 seeds avoided losses in yields by an average of 10 percent per hectare. Yields were further increased among farms that experienced more days of flooding.

Access to Swarna-Sub1 led farmers to invest more in their farms. Farmers who received Swarna-Sub1 seeds cultivated more land, used more fertilizer, and followed better planting techniques.

These investments led to higher rice yields even when no floods occurred. This suggests that risk-reducing seeds have additional benefits beyond those that accrue during weather shocks because they can lead farmers to make more productive investments in their farms.

Scaling up Swarna-Sub1 to flood-prone areas will benefit marginalized farmers the most. Members of Scheduled Castes or Scheduled Tribes will benefit the most from adopting Swarna-Sub1 because they tend to cultivate low-lying, flood-prone land.
Researchers examined the effects of Swarna-Sub1, a flood-tolerant variety of Swarna rice, on yields and farmer behavior in a two-year randomized evaluation. The evaluation took place in two districts of northern Odisha, India—Bhadrak and Balasore—where there are frequent floods and where the Swarna variety is already widely cultivated. Swarna-Sub1 rice is genetically identical to Swarna except for the presence of a gene increasing flood tolerance.

One hundred and twenty-eight villages in the most flood-prone areas of the two districts were selected for the study and randomly assigned to either a treatment or comparison group. Within treatment villages, researchers surveyed two sets of randomly selected farmers: those who received Swarna-Sub1 seeds and those who did not.

Approximately 36 percent of households in the study lived below the poverty line, and 18 percent belonged to a Scheduled Caste or Tribe. Surveyed farmers had, on average, slightly less than seven years of education and owned an average of 0.84 hectares. Researchers followed the farmers for two growing seasons, 2011–2012 and 2012–2013. There was significant flooding in 2011, but there was no flooding the following year.

By comparing treatment farmers with farmers in villages where Swarna-Sub1 was not distributed, researchers measured the impact of the improved seeds on rice yields, the amount of land cultivated, planting techniques, use of credit products, and savings habits. By comparing treatment farmers with comparison farmers in their villages, researchers measured whether and how treatment farmers shared or sold Swarna-Sub1 seeds to farmers who did not receive them.

Swarna-Sub1 reduced yield losses during a flood year. When researchers measured yields in March 2012, following the 2011 floods, Swarna-Sub1 had a clear yield advantage over Swarna when fields were submerged for seven to fourteen days. For each additional day of flooding, planting Swarna-Sub1 increased yields by approximately 64 kilograms per hectare, and led to a 10.5 percent increase in total rice yield overall relative to plots where Swarna-Sub1 was not planted. For floods lasting ten days, the avoided yields loss was 6.28 kg per hectare, representing a 45 percent yield advantage over Swarna. In non-flooded areas, there was no significant difference in yield between the two varieties, indicating that there was no disadvantage to planting Swarna in non-flood years.

Researchers followed the farmers for two growing seasons, 2011–2012 and 2012–2013. They examined the effects of Swarna-Sub1, a flood-tolerance gene increasing flood tolerance.

Researchers followed the farmers for two growing seasons, 2011–2012 and 2012–2013. They examined the effects of Swarna-Sub1, a flood-tolerance gene increasing flood tolerance.

Swarna-Sub1 reduced yield losses during a flood year. When researchers measured yields in March 2012, following the 2011 floods, Swarna-Sub1 had a clear yield advantage over Swarna when fields were submerged for seven to fourteen days. For each additional day of flooding, planting Swarna-Sub1 increased yields by approximately 64 kilograms per hectare, and led to a 10.5 percent increase in total rice yield overall relative to plots where Swarna-Sub1 was not planted. For floods lasting ten days, the avoided yields loss was 6.28 kg per hectare, representing a 45 percent yield advantage over Swarna. In non-flooded areas, there was no significant difference in yield between the two varieties, indicating that there was no disadvantage to planting Swarna in non-flood years.

Researchers followed the farmers for two growing seasons, 2011–2012 and 2012–2013. They examined the effects of Swarna-Sub1, a flood-tolerance gene increasing flood tolerance.
Stress-tolerant crops can reduce risks to farmers and make them more resilient in the face of climate shocks. Swarna-Sub1 and other stress-tolerant varieties can help farmers who rely on rain-fed agriculture to cope with unpredictable weather events. Swarna-Sub1 significantly increased yields in flood conditions without any yield loss in non-flood years. In addition, Swarna-Sub1 is very similar to Swarna, which is already popular among rice farmers in India, so switching to Swarna-Sub1 does not require significant changes in behavior or an extensive information campaign—a sharp contrast with other more complex innovations designed to address risk, such as microinsurance. IRRI and other agricultural research centers are developing and testing other stress-tolerant crops, such as drought- and saline-tolerant varieties, to see if they can similarly protect farmers. Stress-tolerant varieties could be critical technologies for improving smallholder farmers’ resilience to climate change.

Mitigating agricultural risk through stress-tolerant crops could be an important step in getting farmers to invest more in productive agricultural inputs and practices. Swarna-Sub1 protected against the risk of unpredictable flooding, so farmers had less need to self-insure by making conservative planting and investment decisions. This resulted in a number of changes to farmer behavior including cultivating additional land, increasing investment in inputs, adopting improved planting techniques, and changing savings and credit decisions. These are many of the changes that governments, NGOs, and international organizations have been trying to induce smallholder farmers to make in order to enhance their farms’ productivity. The adoption of stress-tolerant crops, such as Swarna-Sub1, appears to be a promising way to address weather risks, allowing farmers to make investments that can increase productivity, yields, and ultimately profits.

Stress-tolerant crops may help address issues of inequity. In Odisha, Swarna-Sub1 could disproportionately benefit farmers belonging to Scheduled Castes or Scheduled Tribes, who have often been relegated to low-lying, flood-prone lands. Flooding is more likely to affect them than higher-caste farmers, so their potential gains from cultivating Swarna-Sub1 are greater. To the extent that marginalized groups around the world tend to farm less desirable pieces of land—and to the extent that climate change will make this land increasingly more difficult to farm—the development and adoption of crops that better tolerate a number of different environmental and weather conditions could help mitigate the effects of these entrenched inequalities.

Author: Nisha Giridhar | Editor: Anna Schickele | Design: Elizabeth Bond, Amanda Kohn
Suggested Citation: J-PAL, CEGA, and ATAI Policy Briefcase. 2015. “Resilient Rice.” Cambridge, MA: Abdul Latif Jameel Poverty Action Lab, Center for Effective Global Action, and Agricultural Technology Adoption Initiative.
Tell us what you think at publications@povertyactionlab.org

The Abdul Latif Jameel Poverty Action Lab (J-PAL) is a network of affiliated professors around the world who are united by their use of randomized evaluations to answer questions critical to poverty alleviation. J-PAL’s mission is to reduce poverty by ensuring that policy is informed by scientific evidence. | www.povertyactionlab.org

The Center for Effective Global Action (CEGA) at UC Berkeley designs and tests solutions for the problems of poverty, generating actionable evidence for policymakers in less developed countries. | www.cea.berkeley.edu

The Agricultural Technology Adoption Initiative (ATAI) is a joint effort between J-PAL and CEGA to fund randomized evaluations that rigorously test programs to improve the adoption and profitable use of agricultural technology. The initiative receives support from the Bill and Melinda Gates Foundation, DFID, and an anonymous donor. | www.atai-research.org