Role of risk-reducing innovations for technology adoption: Toward a portfolio approach

Alain de Janvry and Elisabeth Sadoulet University of California at Berkeley and FERDI¹

¹ International Economic Association meeting, Mexico City, June 19-23, 2017

1. Uninsured risk is a major hurdle to technology adoption

- Agriculture is **risky** due to weather and diseases, and risks are largely **covariate**, making them difficult to co-insure locally
- Farmers are particularly **risk averse** due to poverty, food insecurity, lack of information, lack of trust
- Risk, risk-aversion, and lack of access to risk-reducing instruments induce **self-insurance** that constrains adoption:
 - Coping with shocks (ex-post) through asset decapitalization and migration decreases technology adoption
 - Managing risks (ex-ante) through less investment in higher return-higher risk technologies and crops

- **Objectives** and **outline** of this presentation:
 - Discuss results for three specific innovations to reduce uninsured risks that constrain adoption (ATAI/AMA-Basis results using field experiments):
 - Risk-reducing technology
 - Index insurance
 - Emergency loans

Show how these innovations complement each other in a portfolio approach to risk reduction

2. Risk-reducing technology to induce the adoption of other risky technologies: Case of flood tolerant rice in Odisha

Randomized controlled trial: Seed minikit recipient in Odisha

1. Research objective and approach

• New technology for risk-reduction

- "Swarna-Sub1" = Swarna + Sub1 locus that conveys flood tolerance to rice
- \circ Reduces downside yield risk under flooding

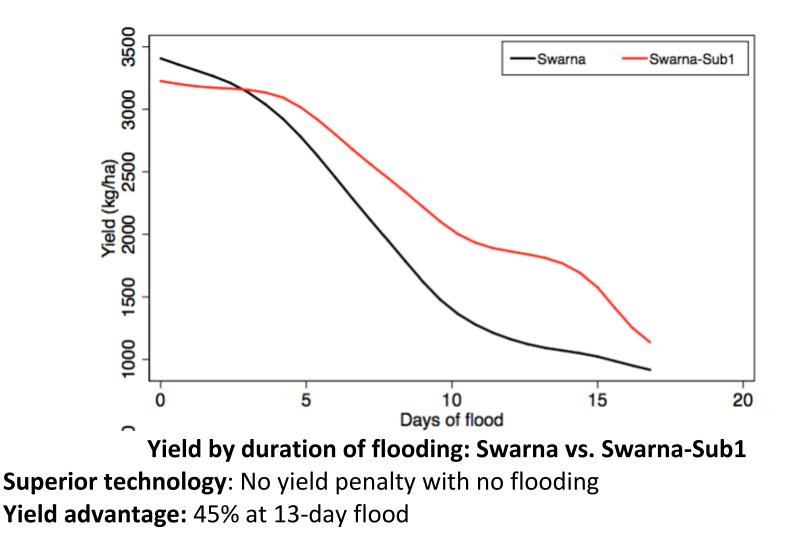
• Objective

 Analyze the impact of use of flood tolerant rice variety on adoption of other technologies

• Approach

 Randomized allocation of seed minikits to villages and farmers within treatment villages

Step 1: Yield tolerance value of resilient technology


What is the plot-level ex-post shock-coping value of Sub1 in farmers' fields?

Measured by yield resilience effect in bad years

Observations

Large floods in year 1: Identify shock-coping value by flood duration

Shock-coping value by flood duration

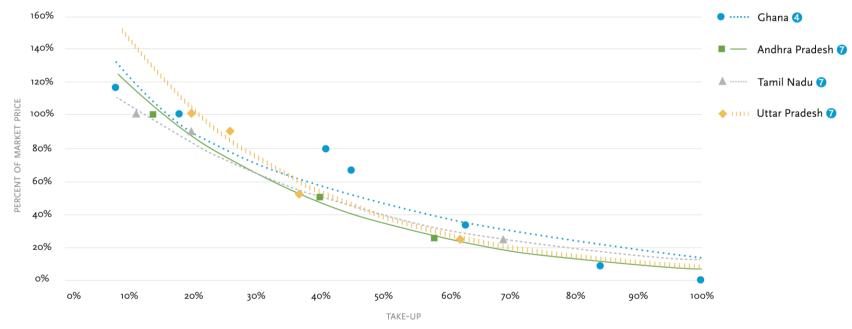
Step 2: Households behavioral response to risk reduction and technology adoption

- What is the (ex-ante) risk-management effect on technology adoption/input use and cultivation practices?
- No floods in year 2: Measure crowding-in of other inputs and cultivation practices due to risk reduction effect of technology
- Impact on behavior toward technology adoption
 - \circ 15% less use of **traditional** varieties
 - \circ 11% increase in (early) **fertilizer** expenditures
 - \odot 33% increase in use of labor-intensive transplanting

Conclusion

- Use of risk-reducing technology can induce the adoption of other risky technological improvements (fertilizers, more costly planting) for moderate risks
- But leaves uncovered
 - Full protection against small risks: need credit and savings
 Protection against large shocks: need insurance
- Need build complementarities between risk-reducing technology and financial instruments for risk-reduction

3. Index insurance for risk reduction: How to make it work?


- 1. Weather index insurance (WII) is an appealing way of offering risk-reduction to smallholder farmers (Carter et al.)
 - Payouts triggered by an observable indicator/index falling below a threshold. Indicator can be:
 - Weather events (rainfall, temperature) measured at meteorological stations
 - Average small area yields measured by crop cuttings or aerial/satellite observations
 - Payouts are not based on actual individual damages as assessed by an insurance adjuster

 \circ Presumed advantages

Allows quick, automatic, and transparent disbursement

- Avoids lengthy and conflictual claims process
- Eliminates misbehavior by client: no room for Moral Hazard and Adverse Selection
- Cheap to implement for large numbers of smallholder farmers
- Ex-post protection from shocks (insurance payouts) can induce ex-ante investment effects (including technology adoption)

2. However, index insurance has met with low uptake unless heavily subsidized by government

Take-up of index insurance as a % of the market price: high take-up with high subsidy, but falls to only 6-18% at market price (ATAI)

• All large-scale index insurance programs are **heavily**

subsidized by government

- \circ India: 75% subsidy (AICI) to get a 60% uptake
- China: 60% subsidy (PICC) to get a 40% uptake; now 100% subsidy

- 3. Main reasons for low uptake are:
 - \circ Basis risk
 - No weather index is perfectly correlated with yields, making it an incomplete/imperfect insurance (Clarke)

High cost due to

- High loading (40-60% over fair price)
- Incomplete data premium

 \odot Lack of re-insurance

- \odot **Behavior**: difficult to understand for farmers
- \odot Lack of trust in insurance company

- 4. But index insurance shown to work for shock-coping and risk management (including tech. adoption) where taken-up:
 - **Coping**: In **Mexico (CADENA)**, insured farmers plant more the year after a shock than non-insured farmers (de Janvry et al.)
 - Coping: In Kenya (IBLI), insurance helps pastoralists avoid decapitalize livestock in response to drought (Janzen & Carter)
 - Management: In Andra Pradesh, farmers with insurance are 6%pts more likely to plant cash crops (Cole et al.)
 - Management: In AP, UP, and T Nadu, insured farmers use riskier, higher-yielding production technology (Mobarak et al.)
 - Management: In Ghana, index insurance induces farmers to plant more maize and use more fertilizer (Karlan et al.)

Hence, worth trying to induce more take-up at market prices

- 5. Many opportunities exist to make index insurance into a better product
 - a. Better contract design
 - i. **Multiperil contracts** preferred (McIntosh et al.)
 - ii. Fail-safe contracts combine indexing with audits (Carter)
 - iii. Institutional-level contracts: coops Guatemala
 - b. Better data and measurement
 - i. Better yield predictions using remote sensing and crop modeling (Lobell)
 - ii. **New data sources**: drones; geo-referenced crowdsourcing photography

c.Better marketing

- i. **Regulation** (like for seeds): Safe minimum quality standards for index insurance (Carter)
- ii. Calibrated **subsidies** for learning (Dupas; Cai et al.)
- d. Better delivery
 - i. Financial literacy: (Cole et al., Cai et al.)
 - ii. **Trust** in insurance provider: witness payouts

Conclusion

- Index insurance **can be effective** in reducing risk and inducing technology adoption,
 - But confined to larger shocks and at institutional level as expensive and hard to sell to individual farmers
 - And complemented by other risk-reducing financial instruments

4. Create flexible structures for savings and credit: BRAC emergency loan progam

 Given low demand for index-insurance, BRAC in Bangladesh offers emergency loans to help clients cope with income shocks (AMA-Basis project)

- Introduce a pre-approved index-based credit product designed to mimic index-insurance
 - Fits easily into BRAC's microfinance operations

• Initially focused on flooding risk, a major source of income loss for farmers in Bangladesh

• **Objective**: help households cope shocks by accessing quick and reliable **liquidity**

Emergency loan properties: Three components

- **Eligibility**: Need a qualifying **credit score** with BRAC
- Trigger: Loans only made available when a pre-specified threshold water level height is passed
- **Pre-approval**: Borrowers are told they are **pre-approved** for an immediate loan up to 50% of their previously approved loan should the trigger be passed

Advantages

Avoids many of the determinants of low insurance demand

 No up-front premium required (no trust issue)
 No perceived loss if there is no shock (no difficult learning)
 No decision to buy now (no liquidity constraint)

Disadvantages

- Inappropriate for large shocks that require a long recovery period (one year loans)
- \odot Ineffective for multiple consecutive shocks
- Inaccessible to new clients as need a credit history

Early results for emergency credit from RCT across branches

- Shock coping: helps prevent asset decapitalization and improves recovery from income shock among borrowers
- **Risk management**: Increase in agriculture **investment** and tech. **adoption** (fertilizer, pesticides) among eligible clients

Conclusion

- Pre-approved emergency loans can be effective for moderate shocks
- Should be complemented by insurance used to cover large and infrequent losses

4. Conclusion: Toward a portfolio approach to risk reduction

- RCT experiments have analyzed risk-reducing instruments one or two at a time: technology, index insurance, credit
- But the best fit of each instrument to reduce risk depends on risk layers: frequency of adverse events and severity of impact:

Risk layers		_		
Frequency	Severity	Risk financing	Ex-ante risk management	Ex-post shock coping
of event	of impact	strategy	(arranged before a disaster)	(arranged after a disaster)
High	Minor	Risk retention	Precautionary savings	Expenditure reallocation
1			Resilient technology	Adjusted income strategy
			Contingent pre-approved credit line	Emergency loans
		Risk transfer	Index insurance	
Low	Major		Social safety net	Discretionary aid

Portfolio management of weather risk for smallholder farmers

• Similar to framework used at the country-level for Sovereign Debt Risk Financing and Insurance (Dercon and Clarke, 2016)

Policy implications

Need a **portfolio approach to** use risk-reducing instruments for technology adoption

- **Demand-side**: Provide **information** on all available instruments and their complementarities
- Supply-side: Provide performing markets (credit, insurance) and public goods (technology) for each instrument
- Subsidize portfolio as opposed to individual instrument
- Extension services need guide use of risk-reducing "portfolios of the poor"
- **RCTs**: Experiment with portfolios and complementarities as opposed to individual and either/or instruments

End