Can Diffusion Theory Improve Extension?

Jeremy Magruder with Lori Beaman, Ariel BenYishay, and A. Mushfiq Mobarak

June 2017

< □ > < (四 > < (回 >) < (回 >) < (回 >)) 三 回

Our Experiment

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Social Learning and Extension

- Social Learning is the last mile of extension systems
 - Practically, too difficult to train all farmers in a new technology
 - Empirically supported: lots of good evidence that farmers learn from each other (e.g. Griliches 1957, Foster and Rosenzweig 1995, Conley and Udry 2010, BenYishay and Mobarak 2014)
- 2 common designs
 - 1. Bring (some) farmers to demo plots outside of the village
 - 2. Train one or a few lead farmers in a village to make their own demo plots
- Do these systems effectively generate social learning?

Learning

Our Experiment

Discussion

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Our Context

- Working with the Ministry of Agriculture and Food Security in Malawi
- Current system: extension agents train lead farmers in new technologies
 - Selected either through village elections or village head appointments
- Ministry wants extension to promote pit planting: an unknown, new technology
- Can we tweak lead farmer system to improve social learning on pit planting?

Learning 0000

Our Experiment

Discussion

A simple model of Technological learning

- Suppose (some) farmers have a signal about a new technology
- Other farmers see the signals of their contacts
- Farmers adopt the new technology if the aggregated signals are sufficiently positive A simple representation:

$$A_{it} = I(\Omega X_{t-1} > \tau_i) \tag{1}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Learning 0●00 Our Experiment

Discussion

entry points matter

- Several recent studies: selecting entry points with different institutions lead to more effective information transmission (e.g. Banerjee et al 2012, Kremer et al 2011, Miller and Mobarak 2014, BenYishay and Mobarak 2014)
- if different institutions are differentially effective, signal aggregation process must be important
 - Everyone is not learning equally from everyone else in village (Ω is fairly sparse)
- Suggests a potential, practical application of results from learning on networks
- We designed an experiment to test whether results from diffusion and learning theory can improve the effectiveness of extension

Learning

Our Experiment

Discussion

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Threshold theory

- Threshold diffusion theory (Granovetter 1978, Centola and Macy 2007): Individuals adopt a behavior if a threshold λ of their connections have adopted it.
- if $\lambda = 1$, then the behavior spreads via a "simple contagion."
 - For simple contagions, new behaviors spread quickly
 - actual choice of entry points is not too important, even with sparse networks
- if $\lambda > 1$, then the behavior spreads via a "complex contagion"
 - most pairs of entry points will lead in no adoption of a new behavior.
 - critical to cluster entry points in a network to yield any adoption

Our Experiment

Discussion

thresholds in technology adoption

- 2 steps to technology adoption
 - 1. Farmers learn that the characteristics of the technology by soliciting signals from neighbors
 - 2. Farmers make an informed adoption decision by aggregating those signals via $\boldsymbol{\Omega}$
- This process leads to simple or complex contagion models, depending on the accuracy of signals and strength of priors
 - Step 2 means that farmers know that they will need a certain amount of information to be persuaded to adopt
 - if there is a small cost to seeking information, farmers will not seek information unless they have enough informed connections that they could be persuaded to adopt
 - A simple contagion is one where persuasion is relatively easy (because signals are accurate, or priors are weak); A complex contagion is one where signals are weaker or priors against adoption are stronger.

Learning

Our Experiment

Discussion

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Our Approach

- We mapped networks in 200 villages to measure Ω
- Working with threshold theory
 - 1. microfound the theory by adapting some new results on learning about new technologies (Banerjee et al 2017)
 - 2. Identify optimal partners under different parameterizations of the theory
 - 3. Randomly assigned villages to receive different pairs of optimal partners
 - 4. Government Extension agents trained the identified partners
 - 5. We measure adoption 2-3 years later and compare to a business-as-usual control

Learning

Our Experiment

Discussion

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Treatment

- 50 villages: business as usual. Extension agent selects 2 lead farmers by "usual methods"
- 50 villages: Simple contagion. We identify the best 2 partners if $\lambda = 1$ and the extension agent trains them
- 50 villages: Complex contagion. We identify the best 2 partners if $\lambda = 2$ and the extension agent trains them
- 50 villages: Geographic Complex contagion. We pretend that the network is defined by geography, and pick the best two partners if $\lambda = 2$ For time reasons won't say much about this.

Learning 0000 Our Experiment

イロト イ理ト イヨト イヨト

æ

Discussion

Mapping Ω

Learning 0000 Our Experiment

Discussion

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Results not shown
 - 1. Trained Seed Farmers adopt Pit Planting
 - 2. Trained Seed Farmers have (much) higher yields
 - 3. Other farmers talk to seed farmers about pit planting, and those who are close to the seed farmers in the network are differentially likely to adopt
 - especially if they are close to both seeds.

Learning 0000

Our Experiment

Discussion

	A	on Rate	Nui	nber .	Adopters	Any Non-Seed Adopters				
	(1)		(2)	(3)		(4)	(5)		(6)	
Simple Treatment	0.035	**	0.006	1.04		0.43	0.158		0.189	*
	(0.017)		(0.022)	(.71)		(1.31)	(0.101)		(0.111)	
Complex Treatment	0.027	*	0.038	2.37	**	2.23	0.210	**	0.304	***
	(0.016)		(0.026)	(1.21)		(1.71)	(0.095)		(0.101)	
Geo treatment	0.038		0.015	0.54		-0.73	0.068		0.188	*
	(0.026)		(0.030)	(.71)		(1.11)	(0.096)		(0.110)	
Year	2		3	2		3	2		3	
N	200		141	200		141	200		141	
Mean Benchmark	0.044		0.077	1.940		4.100	0.46		0.543	
Simple = Complex	0.684		0.177	0.313		0.341	0.581		0.240	
Complex = Geo	0.670		0.442	0.142		0.077	0.113		0.220	
Simple = Geo	0.898		0.723	0.552		0.331	0.352		0.990	

Table 8: Simple and Complex Learning in Pit Planting

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Learning 0000

Our Experiment

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Table XX: Learning Heterogeneity													
	Sloped Land			Flat Land			Familiar Technology		Unfamilliar Technology				
	(1)	(2)		(3)		(4)		(5)	(6)	(7)		(8)	
Simple	-0.013	-0.039		0.057	***	0.033		0.023	0.005	0.049		0.029	
	(0.024)	(0.038)		(0.019)		(0.022)		(0.017)	(0.031)	(0.030)		(0.022)	
Complex	0.005	-0.029		0.050	***	0.054	**	0.016	-0.035	0.054	**	0.094	***
	(0.024)	(0.036)		(0.018)		(0.025)		(0.016)	(0.030)	(0.024)		(0.030)	
Geo	0.000	-0.068	**	0.042	*	0.013		0.032	-0.048	0.025		0.040	
	(0.031)	(0.032)		(0.023)		(0.024)		(0.035)	(0.030)	(0.024)		(0.029)	
Year	2	3		2		3		2	3	2		3	
N	1313	912		1855		1380		2026	1263	1928		1760	
mean	0.0658	0.123		0.0207		0.0457		0.0462	0.104	0.0278		0.0493	
sd	0.248	0.33		0.143		0.209		0.21	0.305	0.165		0.217	
Simple = Complex	0.419	0.782		0.742		0.311		0.677	0.0797	0.896		0.0296	
Complex = Geo	0.869	0.169		0.762		0.0957		0.642	0.451	0.301		0.109	
Simple = Geo	0.667	0.327		0.523		0.34		0.786	0.0174	0.424		0.662	

Learning 0000 Our Experiment

Discussion

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Conclusions

- Both Simple and (particularly) Complex contagion targeting increases adoption relative to the elections and appointments in business as usual
- particularly among those with the greatest benefits to learning.
- Very high probability of no social learning at all in business as usual also supports idea of complex contagion
- suggests the need for multiple lead farmers, clustered in the same part of the network.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Policy Directions and discussion

- Rather than extrapolate from an institution that works someplace, we identified the goal for policy makers
 - Using local institutional knowledge, find an institution that will pick multiple partners in the same (dense) part of the network.
 - Emphasize depth rather than breadth of coverage
- Some ideas on how to achieve:
 - Multiple farmers from the same farmer's group
 - algorithm from simulations identify high degree friends of a high degree farmer.
 - gossip-type data collection
- Social learning is not automatic, and network theory has practical importance for extension.