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Can Network  Theory-Based Targeting 
Increase Technology Adoption?†

By Lori Beaman, Ariel BenYishay, Jeremy Magruder, 
and Ahmed Mushfiq Mobarak*

Can targeting information to  network-central farmers induce more 
adoption of a new agricultural technology? By combining social 
network data and a field experiment in 200 villages in Malawi, we 
find that targeting central farmers is important to spur the diffusion 
process. We also provide evidence of one explanation for why cen-
trality matters: a diffusion process governed by complex contagion. 
Our results are consistent with a model in which many farmers need 
to learn from multiple people before they adopt themselves. This 
means that without proper targeting of information, the diffusion 
process can stall and technology adoption remains perpetually low.  
(JEL O13, O18, O33, Q12, Q16)

Technology diffusion is critical for growth and development (Alvarez, Buera, 
and Lucas 2013; Perla and Tonetti 2014). Information frictions are potential con-
straints to technology adoption, and social relationships can serve as important vec-
tors through which individuals learn about, and are then convinced to adopt, new 
technologies.1 Adoption of apparently productive new technologies has often been 
frustratingly slow (Ryan and Gross 1943; Munshi 2007; Jack 2011; Qiao, Huang, 
and Wang 2015). This generates a policy priority: how can  policymakers effectively 
use social relationships to promote technological diffusion? In this paper, we imple-
ment a field experiment in which we choose entry points of information (seeds) into 

1 Large literatures in economics (Duflo and Saez 2003, Munshi 2008, Magruder 2010, Beaman 2012), finance 
(Bursztyn et al. 2014), sociology (Rogers 1962), and medicine and public health (Coleman, Katz, and Menzel 1957; 
Flodgren et al. 2007; Oster and Thornton 2012) show that information and behaviors spread through  interpersonal ties.
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a social network and introduce a productive new agricultural technology via those 
seeds across 200 villages in Malawi.

A rich empirical literature has documented faster diffusion when technologies 
were seeded with people who are central in the network (Banerjee et al. 2013 in the 
context of microfinance in India; Banerjee et al. 2019 in the context of immuniza-
tion in India; Kim et al. 2015 looking at health behaviors in Honduras). Targeting 
information to central agents in a network can even work better than broadcasting 
information widely (Banerjee et al. 2020).

 These empirical patterns that establish the importance of centrality may be 
surprising given recent theoretical discussion by Akbarpour, Malladi, and Saberi 
(2020)—henceforth, AMS—which shows that in many canonical diffusion models, 
adding a few additional seeds leads to more diffusion than targeting central people 
to serve as seeds. The class of models AMS consider require three conditions. First, 
agents must adopt a new behavior after a single exposure to someone else who has 
adopted in the network. This is called “simple contagion” and is the base for work-
horse models like the  Susceptible-Infected-Recovered (SIR) model. Second, the 
time period for adoption is sufficiently long. And finally, social interaction within 
the network is frequent. The intuition for the AMS result is straightforward: whether 
central or not, people are connected to their local network, so given enough time and 
enough talk, messages will spread through their connections and quickly reach the 
 well-connected people at the network’s center. Adding a few more seeds at random 
increases the probability that at least one of them will be close to the  well-connected 
center to begin with, making targeting relatively unimportant. However, if any of the 
three criteria fail, then targeting may be necessary to prevent information frictions 
from curbing widespread technological diffusion.

Our paper helps bridge the gap between these theoretical and empirical results. 
We implemented a randomized controlled trial where we used different variants of 
the threshold model of diffusion (e.g., Granovetter 1978; Centola and Macy 2007; 
Acemoglu, Ozdaglar, and Yildiz 2011) to choose seeds. This creates a unifying 
framework which both generates variation in seed centrality across treatment arms 
and also helps us explore why targeting may matter for technology diffusion.

Our experiment takes place in an important  real-world context: agricultural 
extension services in developing countries. Agricultural productivity growth in 
Africa has stalled (World Bank 2008), in part because of a slow adoption rate of 
new technologies. Agricultural extension is the key policy tool governments use 
to promote technology adoption (Anderson and Feder 2007), and it often relies on 
social learning.2 We partnered with the Ministry of Agriculture in Malawi to run an 
experiment that could enhance the effectiveness of its extension services by part-
nering with two “seed” farmers in each study village who could induce widespread 
social learning. The experiment was implemented in 200 villages, with 50 villages 
in each of the 4 treatment groups. The specific technology promoted, “pit planting,” 
has the potential to significantly improve maize yields in arid areas of rural Africa.3 

2 A large literature has established that social learning about agricultural practices influences the uptake of new 
technologies among farmers (Griliches 1957, Foster and Rosenzweig 1995, Munshi 2004, Bandiera and Rasul 
2006, Conley and Udry 2010, Burlig and Stephens 2019, Islam et al. 2019).

3 It has been shown to increase productivity by  40–100 percent in tests conducted under controlled condi-
tions (Haggblade and Tembo 2003); in  large-sample field tests conducted under realistic “as implemented by 
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It is a practice that was largely unknown in Malawi, and learning is therefore crucial 
for the diffusion of this technology.

In the Benchmark treatment, extension agents chose the seeds as they normally 
would (status quo or picking by experts). In the remaining treatment groups, we 
strategically chose the seeds using detailed social network data we collected in 
every village. We ensured that selected seeds in different treatments would inhabit 
different parts of the network by exploiting variations on the threshold model of 
diffusion to suggest pairings of seeds that may be more or less effective, given dif-
ferent underlying diffusion processes. In the second treatment group, we selected 
seeds who would (in theoretical simulations) optimize diffusion over a  4-year 
period, if the diffusion process is characterized by a complex contagion. Complex 
contagion is a diffusion process in which technology only diffuses when indi-
viduals are connected to at least two knowledgeable farmers. The pair of seeds 
chosen by this complex contagion treatment are both central in the network. Seed 
selection in the third treatment is the result of simulations of the simple contagion 
variant of the threshold model, where farmers only need to know one knowledge-
able farmer. In simple diffusion, a single central seed will diffuse to the dense part 
of the network so that a second seed is best used to diffuse to the more distant 
periphery. As a result, one of the seeds is  network-central while the second person 
is typically more peripheral. This variant of the model is similar to those consid-
ered in the AMS framework. In the final treatment group, we used geography to 
proxy for social network data, to create a cheaper, “scalable” approach coupled 
with the complex contagion model. These seeds are typically low centrality, but 
are close to each other in the network.

During the  3-year period of the experiment, pit planting adoption grew from 
0 percent to about 11 percent in the villages with two highly central seeds. This rate 
of increase in adoption is comparable to the spread of some very profitable new agri-
cultural technologies (e.g., Munshi 2007). Ryan and Gross (1943) show that it took 
10 years for hybrid seed corn to be adopted in Iowa in the 1930s. The adoption rate 
is 3 percentage points lower in Benchmark villages in years 2 and 3, though only the 
year 2 differences are statistically significant.

We also test whether the initial advantage of central seeding will likely dissipate 
over time by examining another important metric: whether any farmers in the vil-
lage other than the seeds adopt. If there is no diffusion within the first three years, it 
is unlikely that conversation and experience over longer time horizons will inspire 
broad technology adoption. We observe a critical failure of  expert-based seeding. 
There is no diffusion of pit planting in 45 percent of the Benchmark villages after 3 
years. In villages with two highly central seeds, there was a 56 percent greater likeli-
hood (  p < 0.01) that at least one person other than the seeds adopts the technology 
in the village, relative to the Benchmark. The results clearly indicate that targeting 
central seeds was necessary to generate adoption of pit planting in Malawi.

We then turn to understanding why central targeting was so important in this con-
text. One potential explanation is that the variant of the threshold model that we used 
to select seeds captures the underlying diffusion process. AMS and Jackson and 

 government” conditions (BenYishay and Mobarak 2019); and using experimental variation among villagers in 
the present study.
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Storms (2019) demonstrate that targeting on the basis of centrality is more import-
ant when there is complex contagion. We show that different thresholds for technol-
ogy adoption are naturally  micro-founded through a naïve Bayesian learning model, 
as we discuss in Section IVA. We anticipate that learning about a new agricultural 
technology in a developing country is precisely a context in which agents may have 
a high threshold. This fact would have clear policy relevance: if farmers need to 
learn from more than one informed connection before they themselves adopt, this 
would generate a very slow and in many cases permanently stalled adoption pattern, 
just as we observe in Benchmark villages. Overcoming this problem would necessi-
tate targeting central individuals, as in Banerjee et al (2019).

The diffusion we observe demonstrates several empirical regularities consistent 
with complex contagion. Though, we note that it is difficult to differentiate complex 
contagion from other reasons that targeting multiple central farmers may improve 
technology adoption. We observe three patterns suggested by complex contagion. 
First, a key insight from the threshold model is that poor targeting could lead to a 
complete failure of adoption within the village, as we see in our data. Second, consis-
tent with our theory, we show that treatment effects are largest (i) in villages where 
there is more to learn, because baseline knowledge was lowest, and (ii) among farm-
ers whose land is most suited to pit planting. Third, we use our  farmer-level data to 
provide direct evidence in support of complex contagion. We leverage the random 
treatment assignment to identify that farmers who are connected to two seeds are 
more likely to learn about and adopt pit planting than farmers connected to only one 
seed, holding network position constant.

The targeting method used in this paper is a proof of concept, relying on an 
expensive method of collecting network data. As such, it is not intended to be prac-
tical or directly scalable. The next step is to use cheaper ways to identify highly 
central individuals. One could use gossips (Banerjee et al. 2019), cell phone data 
(Björkegren 2018; Blumenstock, Chi, and Tan 2019), or other administrative data 
(Bennett and Bergman 2020), or aggregated relational data from a sample of indi-
viduals (Breza et al. 2020) to achieve this.4

The rest of the paper is organized as follows. We start with the experimental setting 
and design, along with details on the implementation of the intervention. Section II 
describes the data. Section III presents the average treatment effects on pit planting 
adoption. In Section IV, we propose a theoretical model to explain the results, and 
provide supplemental evidence of the proposed mechanism. Section  V discusses 
 cost-effective and  policy-relevant alternatives to the  data-intensive  network theo-
ry-based procedures we used in this paper, and discuss other options available in the 
literature. Section VI concludes.

4 In our paper we did one lower cost method, the  geography-based targeting strategy. It generated some gains 
in adoption relative to the Benchmark. However, physical proximity does not appear to be a good proxy for social 
connections in this context. A variety of other papers test the ability of local institutions, such as nominations or 
focus groups, to identify useful partners: Kremer et al. (2011) identify and recruit “ambassadors” to promote water 
chlorination in rural Kenya; Miller and Mobarak (2015) first market improved cookstoves to “opinion leaders” in 
Bangladeshi villages before marketing to others; and BenYishay and Mobarak (2019) incentivize “lead farmers” 
and “peer farmers” to partner with agricultural extension officers in Malawi. We also develop an intuitive algorithm 
to identify central farmers that can be implemented with a small number of interviews, and simulations on our data 
show that this method would generate large gains in technology adoption.  
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I. Field Experiment

A. Setting

Our experiment on technology diffusion within an agricultural extension sys-
tem takes place in 200 villages randomly sampled from 3 Malawian districts with 
largely  semi-arid climates (Machinga, Mwanza, and Nkhotakota). Approximately 
80 percent of Malawi’s population lives in rural areas (World Bank 2011), and 
agricultural production in these areas is dominated by maize: 97 percent of farm-
ers grow maize, and over one-half of households grow no other crop (Lea and 
Hanmer 2009). Technology adoption and productivity in maize is thus closely tied 
to welfare.

The existing agricultural extension system in Malawi relies on Agricultural 
Extension Development Officers, henceforth extension agents, who are employed 
by the Ministry of Agriculture and Food Security (MoAFS). Many extension agents 
are responsible for upward of  30–50 villages, which implies that direct contact with 
villagers is rare. According to the 2006/2007 Malawi National Agricultural and 
Livestock Census, only 18 percent of farmers participate in any type of extension 
activity. Extension agents cope with these staff shortages by relying on a small num-
ber of lead farmers, who are trained, but not incentivized, to disseminate knowledge 
via social learning. Against this backdrop of staff shortages, maximizing the reach 
of social learning in the diffusion process may be a  cost-effective way to improve 
the effectiveness of extension.

B. Experimental Design

We partner with the Malawi Ministry of Agriculture to select the appropriate 
technologies to promote and engage extension staff to train exactly two seed farm-
ers in each study village. Our experimental variation only changes how those seed 
farmers are chosen and holds all other aspects of the training constant.

The experiment has four treatment arms. The Benchmark treatment is the  status 
quo Benchmark, where extension agents were asked to select two seed farmers as 
they normally would in settings outside the experiment. In the remaining three treat-
ment groups, we strategically chose the seeds to ensure that partner farmers were 
located in different parts of the network.

We identified farmers with different centrality characteristics in each of the study 
villages by choosing partners who would be the “theoretically optimal” choices 
as seeds under alternative formulations of the threshold model (e.g., Granovetter 
1978; Centola and Macy 2007; Acemoglu, Ozdaglar, and Yildiz 2011). The thresh-
old model of diffusion postulates that individuals adopt a behavior only if they are 
connected to at least a threshold number of adopters  (λ) .5

5 In Section IVA, we will present a  micro-foundation which demonstrates how a learning model can generate 
thresholds. In this version of the model, the threshold is based on the number of people informed about the technol-
ogy, as opposed to the number of adopters directly.
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The three treatment arms in which we selected the seeds using the threshold 
model are as follows:6

 (i) Complex Contagion: This treatment identified seeds by maximizing sim-
ulated diffusion when   E [  λ ]   ≈ 2   using network relationship data. The two 
selected seeds are usually both very central in the network.

 (ii) Simple Contagion: This treatment identified seeds by maximizing simulated 
diffusion when   E [  λ ]   ≈ 1   using network relationship data. In most networks, 
this identifies one seed who is central and one who is not.

 (iii) Geo Treatment: This treatment typically identifies two seeds who are near 
each other in the network, but are not be central. This resulted from maxi-
mizing simulated diffusion when  E [λ]  ≈ 2  using network data constructed 
using only geographic proximity.

The intuition for why the different formulations of the threshold model generates 
these different targeting strategies is as follows. When many farmers have a thresh-
old for adoption above 1, what this literature calls complex contagion, targeting 
becomes essential because one needs to seed information in part of the network that 
is dense and where the seeds have connections in common. In this model, identi-
fying two seeds who are both central to the network is important for diffusion.7 In 
contrast, when the threshold is generally equal to 1, what the literature calls simple 
contagion, identifying a single seed in the central part of the network is sufficient 
to achieve widespread diffusion. In this case, a second seed is optimally located in 
a more distant part of the network, so that both the center and the periphery can 
achieve quick  take-up. Identifying the optimal seeds in each of these cases requires 
rich network data, described in Section II. We also implemented a fourth treatment, 
“Geo,” which substitutes household locations for the network graph under the 
assumption that nearby households are likely to be connected.

In online Appendix Section A.1, we discuss in detail the algorithm used to choose 
the seeds. Note that in all villages, we can construct which farmers would have been 
chosen as Simple diffusion seeds, Complex diffusion seeds, or Geo seeds, irrespec-
tive of the village’s assigned treatment condition. We call the counterfactual seed 
farmers “shadow” farmers. We also use the term “partner” to refer to an individual 
who would be a Simple, Complex, or Geo seed irrespective of whether they are 

6 In other words, we randomly assign the “threshold model formulations” to different villages. Randomization 
was stratified by district, and implemented using a  re-randomization procedure which checked balance on the 
following covariates: percent of village using compost at baseline; percent village using fertilizer at baseline; and 
percent of village using pit planting at baseline. Randomization was implemented in each district separately.

7 As we will see later, this feature has significant ramifications for targeting: while randomly selected seeds are 
quite likely to be relatively close to the center of any network, groups of randomly selected seeds remain unlikely 
to share ties in common.
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trained and therefore become a seed.8 We do not observe shadow farmers for the 
Benchmark treatment.9

Table 1 demonstrates the centrality of the two selected partner farmers in each 
treatment arm. The most central of the two partners (Rank 1 partners), as measured 
by eigenvector centrality10 in column 1, is similarly central in both the Complex and 
Simple diffusion, but less central in Geo. However, the second partner highlights 
the key difference in the treatments. The second partner in the Complex treatment 
is much more central than the second partner in the Simple diffusion treatment. In 
Geo, neither partner is very central, but they are similarly central, highlighting that 
geography in this context was not a good proxy for social connectedness but that 
the targeting strategy was ex ante similar to the Complex diffusion strategy. If we 
use an alternative measure of social connectedness, degree (the number of contacts 
a person has) we see a similar pattern. Both Complex partners have many connec-
tions. The most connected partner in the Simple diffusion treatment is similar in 
the number of contacts to the most connected partner in Complex diffusion, but the 
second partner is much less connected.

The Benchmark seeds, which were chosen by extension officers using their own 
criteria, show an intermediate level of centrality as measured by both eigenvector 
centrality and degree. Overall, this arm of the experiment constitutes a meaningful 
and challenging test for the  network-based targeting treatments since the extension 
agents were able to use valuable information not available to researchers, such as 
the individual’s motivation to take on the role. The Benchmark treatment is similar 
to what the Malawi Ministry of Agriculture and other policymakers would normally 
do, so this is the most relevant counterfactual.11

8 As an example, a Simple partner is a seed if the village is randomized to be a Simple village or a shadow farmer 
if the village is Complex, Geo, or Benchmark.

9 We did not ask extension workers to name the seed farmers they would choose and then ask them to train other 
seeds, since we thought it would lead to high  noncompliance. 

10 Eigenvector centrality is weighted sum of connections, where each connection’s weight is determined by its 
own eigenvector centrality (like Google  page-rank).

11 Normally the Ministry only trains one “Lead Farmer” per village, not two. In most villages, the Lead Farmer 
will already be established, except for villages in which there hasn’t been an extension officer assigned to the village 
for a long time. The extension agents would have had to select a second seed farmer in Benchmark villages due to 
the experiment.

Table 1—Centrality of Partner Farmers across Treatments

Eigenvector centrality Degree

Rank 1 partner Rank 2 partner Rank 1 partner Rank 2 partner
(1) (2) (3) (4)

Treatment arms
Complex diffusion 0.28 0.19 17.49 13.39
Simple diffusion 0.27 0.07 16.59 6.70
Geographic 0.15 0.10 9.48 6.34
Benchmark 0.21 0.13 13.29 9.80

Notes: The sample includes all partner farmers, including seeds and shadows. However, 
Benchmark partners are restricted to only seed farmers (and hence the sample size is smaller) 
because Benchmark shadow farmers are not observed in Complex, Simple, or Geo villages.
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C. Agricultural Technologies

In this section, we describe the two technologies introduced to seed farmers 
and in online Appendix Section A.2 we analyze data on crop yields to give further 
insights into the benefits of the technologies.

Pit Planting.—Maize farmers in Malawi traditionally plant seeds in either flat land 
or after preparing ridges. Ridging has been shown to deplete soil fertility and decrease 
agricultural productivity over time (Derpsch 2003, 2004). In contrast, pit planting 
involves planting seeds in a shallow pit in the ground, in order to retain greater mois-
ture for the plant in an arid environment, while minimizing soil disturbance. In our 
sample, pit planting was not widely practiced at baseline: 9 out of 4,004 farmers 
(0.22 percent) planted with pits the year prior to treatment. The technique is practiced 
more widely in the Sahel, and has been shown to greatly enhance maize yields both 
in controlled trials and in field settings in East Africa, with estimated gains of  50–113 
percent in yields (Haggblade and Tembo 2003, BenYishay and Mobarak 2019). In 
online Appendix Section A.2, we present evidence that pit planting increased yields 
by 44 percent (a treatment on the treated estimate) for our trained seed farmers. The 
enhanced productivity is thought to derive from three mechanisms: (i) reduced till-
age of topsoil, which allows nutrients to remain fixed in the soil rather than eroding, 
(ii) concentration of water around the plants, which aids in plant growth during poor 
rainfall conditions, and (iii) improved fertilizer retention.

Practicing pit planting may involve some additional costs. First, hand weeding or 
herbicide requirements may increase because less land is tilled, though focus groups 
undertaken by the authors suggest that weeding demands were actually reduced 
substantially relative to ridging. Second, digging pits is a  labor-intensive task with 
large  up-front costs. However, land preparation becomes easier over time, since pits 
should be excavated in the same places each year, and estimates suggest that land 
preparation time falls by 50 percent within 5 years (Haggblade and Tembo 2003). 
BenYishay and Mobarak (2019) find that in Malawi, labor time decreases while the 
change in other input costs are negligible in comparison. Labor costs are minimized 
when pit planting is used on flat land.

Crop Residue Management.—Seed farmers were also trained in crop residue 
management (CRM), a set of farming practices which largely focus on retention 
of crop residues in fields for use as mulch. Alternative practices commonly used by 
farmers include burning the crop residues in the fields and removing them for use 
as livestock feed and compost. The trainings emphasized the value of retaining crop 
residues as mulch to protect topsoil, reduce erosion, limit weed growth, and improve 
soil nutrient content and water retention. There is little experimental evidence on 
the impacts of CRM on soil fertility, water retention, and yields in similar settings.

D. Seed Farmers: Descriptive Statistics, Training, and Take-Up

Extension agents chose the seed farmers in the Benchmark villages, and the 
researchers chose the seeds in the remaining treatment villages. We already dis-
cussed in Table 1 how central the seeds are in different treatments. Online Appendix 
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Table A2 provides some summary statistics describing how the chosen seeds differ 
in terms of farm size and a wealth index.12 The most striking pattern is that the farm-
ers selected as seeds under the geographic treatment are significantly poorer than 
other seeds. This is because many households live on one of their plots in Malawi. 
Households who are geographically close to lots of people will mechanically have 
less land, and these households tend to be poorer overall.

We observe that there are more households connected to both seeds in Complex 
villages than in other treatment arms. A total of 35 percent of our random house-
hold sample has a connection to a Simple partner, and 6 percent are connected to 
both Simple partners. By contrast, 18 percent of households are connected to two 
Complex partners. For the  Geo-based partner, 10 percent of households are con-
nected to two Geo partners. Online Appendix Table A3 displays the distribution of 
how far, in social distance, households are from the partner farmers in the different 
treatment arms.

In addition to the names of the two seed farmers, we provided extension agents 
with replacement names in all  non-Benchmark villages in case either of the cho-
sen seeds refused to participate in the training.13 Refusal was uncommon: exten-
sion agents trained 93 percent of the selected seeds or their spouses. We conduct 
 intent-to-treat analysis using the original seed assignment.

The seed farmers received a small  in-kind gift (valued at US$8) if they them-
selves adopted pit planting in the first year. There was no gift or incentive provided 
on the basis of others’ adoption in the village or the seeds’ own adoption in subse-
quent years. Online Appendix Table A4 demonstrates that the training (and incen-
tive) was effective at inducing adoption, but not perfectly. Seed farmers, relative to 
the shadow farmers, are more likely to know how to do pit planting and more likely 
to adopt pit planting during the first agricultural year. Note, 30 percent of seed farm-
ers adopted pit planting during year 1, compared to 5 percent of shadow farmers 
(p < 0.01). Moreover, the adoption rate among seed farmers is the same across all 
treatment arms: Complex, Simple, Geo, and Benchmark.

Knowledge and adoption rates of pit planting increase among the shadow farmers 
over time. Knowledge of pit planting among the seeds is declining slightly between 
year 1 and years 2 and 3, but there remains a significant knowledge gap between 
seed and shadow farmers even in year 3. Adoption remains more or less constant 
among seed farmers. Online Appendix Section A.3 and the notes to online Appendix 
Table A4 provide the details on the econometric specification used for these results. 
Seed farmers are also more likely to adopt crop residue management (CRM) in year 
1. However, by year 2 there is no longer a meaningful gap in the CRM adoption rate, 
and in fact the adoption rate among shadow farmers is declining over time. Given 
this pattern, and the fact that CRM was not a “new” technology in this area, we focus 
our analysis on the adoption of pit planting. We include CRM adoption results in 
online Appendix Table A6.

12 Table 1 is not demonstrating balance in the randomization of villages across treatment arms. Note that there 
are only 100 Benchmark farmers since we never observe shadow Benchmark farmers.

13 As the technologies themselves were new, the extension agents were themselves trained by staff from the 
Ministry’s Department of Land Conservation. 
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II. Data

After training the seed farmers, we collected up to three rounds of household 
survey data. Online Appendix Figure A1 shows the timeline of these data collection 
activities. We describe each major data source in turn.

Social Network Census Data.—Targeting based on different network character-
istics requires relatively complete information on network relationships within the 
village (Chandrasekhar and Lewis 2016). More than 80 percent of households in 
every sample village participated in the census.14

The main focus of the social network census was to elicit the names of people 
each respondent consults when making agricultural decisions. General information 
on household composition, socioeconomic characteristics of the household, general 
agriculture information, and work group membership was also collected. Agricultural 
contacts were solicited through several prompts.15 These responses were matched to 
the village listing to identify links. Individuals are considered linked if either party 
named each other (undirected graph), and all individuals within a household are 
considered linked.

Sample Household Survey Data.—We collected survey data on farming tech-
niques, input use, yields, assets, and other characteristics for a sample of approxi-
mately 5,600 households in the 200 sample villages. We attempted to survey all seed 
and shadow farmers in each village, as well as a random sample of 24 other individ-
uals, for a total of about 30 households in each village.16 In villages with fewer than 
30 households, all households were surveyed. Three survey rounds were conducted 
in Machinga and Mwanza in 2011, 2012, and 2013, and two survey rounds were 
conducted in Nkhotakota in 2012 and 2013.17 The first round asked about agricul-
tural production in the preceding year, thus capturing some baseline characteristics, 
as well as current knowledge of the technologies, which could reflect the effects of 
training. Since the data were collected at the start of a given agricultural season, 
but after land preparation was complete, we observe three adoption decisions for 
pit planting for farmers in Mwanza and Machinga, and two decisions for farmers in 
Nkhotakota. Since crop residue management (CRM) decisions are made at the end 

14 We interviewed at least one household member from 89.1 percent of households in Nkhotakota, 81.4 per-
cent in Mwanza, and 88.6 percent in Machinga. We interviewed both a man and a woman in about 30 percent of 
households.

15 We first asked in general terms about farmers with whom they discuss agriculture. To probe more deeply, we 
also asked them to recall over the last five years if they had (i) changed planting practices; (ii) tried a new variety 
of seed, for any crop; (iii) tried a new way of composting; (iv) changed the amount of fertilizer being used for any 
crop; (v) tried a new crop, such as paprika, tobacco, soya, cotton, or sugar cane; or (vi) started using any other new 
agricultural technology. If they responded affirmatively, we asked respondents to name individuals they knew had 
previously used the technique in the past and whether they had consulted these individuals. Finally, we asked them 
if they discussed farming with any relatives, fellow church or mosque members, or farmers whose fields they pass 
by on a regular basis, or if there are any others with whom they jointly perform farming activities. We also elicited 
their close friends and contacts with whom they share food, though we did not include these contacts as agricultural 
connections for the purposes of our network mapping.

16 In Simple, Complex, and Geo villages there were 6 (2 × 3) seed and shadow farmers to interview, while 
in Benchmark villages there were 8 (2 × 4) seeds and shadows. Recall we do not observe Benchmark farmers in 
Simple, Complex, and Geo villages.

17 Unanticipated delays in project funding required us to start training of extension agents and seed farmers in 
Nkhotakota in 2012 instead of 2011 as we did in Mwanza and Machinga.
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of an agricultural season after harvest, we observe CRM decisions for two agricul-
tural seasons in Mwanza and Machinga, and one in Nkhotakota.

Randomization and Balance.—Randomization was stratified by district, and 
implemented using a  re-randomization procedure which checked balance on three 
 village-level covariates.18 Online Appendix Table A5 shows how observable base-
line characteristics from the social network census vary with the treatment status 
of the village. The table also shows  p-values from the joint test of all treatment 
groups. The table notes provide details on the specification used. Few differences 
across treatment groups are statistically significant. Overall, the joint test reveals no 
differences for 10 out of 12 variables. Farm size is the most concerning: farmers in 
the Benchmark villages have larger farm sizes on average than farmers in Simple 
and Complex villages, and the joint test across the network treatment variables is 
significant at the 10 percent level. Additional analysis available from the authors 
controls for this variable in all specifications and finds that all results are robust to 
this control.

III. Average Treatment Effects on Diffusion

In this section, we report experimental results on  village-level outcomes across 
the four treatment arms.

A. The Advent of Diffusion

We focus on the advent of diffusion in our sample villages as a key outcome. 
While the speed of diffusion may matter in some settings, we think that a key policy 
goal is to have diffusion start in as many villages as possible. If there is no diffusion 
in a village after 3 years, it is likely that the technology will never be widely adopted.

Therefore, we first focus on “any adoption” as an indicator for villages which 
have at least one household (other than the seeds) that adopted pit planting. Our 
 village-level regression is as follows:

   Y v   = α +  β 1    Complex v   +  β 2   Simpl e v   +  β 3   Ge o v   +  X v  γ +  ε v   ,

where  Xγ  are variables used in the  re-randomization routine, specified in the table 
notes, and district fixed effects. The results are reported in Table 2. First note that in 
year 2, we observe the start of the diffusion process in only 42 percent of Benchmark 
villages. This increases in year 3 to a modest 54 percent. This is evidence that this 
is an environment where igniting diffusion is challenging. The first two columns of 
Table 2 show that the propensity for “any adoption” in year 2 is statistically signifi-
cantly larger in villages where both seeds were highly central (Complex diffusion 
treatment) relative to Benchmark villages. The 25 percentage point gap is large rel-
ative to the “any adoption” rate of 42 percent in our Benchmark villages. The “any 

18 The three variables include: percent of village using compost at baseline, percent of village using fertilizer at 
baseline, and percent of village using pit planting at baseline. We control for these variables in the analysis.
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adoption” rate in Complex villages is also 15 percentage points larger than in Geo 
villages ( p = 0.10) and 10 percentage points larger compared to villages assigned 
to the simple diffusion treatment ( p = 0.30). In year 3, Simple, Complex and Geo 
villages all attain a statistically higher rate of “any adoption” than Benchmark 
villages. Here, 85 percent of Complex villages had at least one  non-seed adopter, 
compared to 73 percent of Simple and Geo villages and 54 percent of Benchmark 
villages.

B. Adoption Rates across Treatment Arms

We also look at the speed of diffusion, captured by the adoption rate. Columns 3 
and 4 in Table 2 document treatment effects on the adoption rate, which is defined 
as the proportion of  non-seed farmers who adopted pit planting in each agricultural 
season. Both Simple and Complex diffusion villages have higher adoption rates rel-
ative to the Benchmark in year 2. Compared to the Benchmark rate of 3.8 percent, 
Complex and Simple villages both experience a 3.6 percentage point higher adop-
tion rate. We cannot reject that the adoption rates are the same in Simple, Complex, 
and Geo villages. The adoption rate increases across all four types of villages in year 
3. The adoption rate increases in the Benchmark villages, the reference category, 
from 3.8 percent to 7.5 percent from years 2 to 3. With the smaller sample size of 
141 villages in year 3, we cannot reject that the adoption rate is the same across 
all treatment types, though the point estimate on Complex remains the largest, and 
is equal in magnitude to the effect size observed in year 2. The adoption rate in 
Complex villages in year 3 is 11 percent.

Table 2—Village-Level Regressions of Adoption Outcomes across Treatment Arms

Any non-seed adopters Adoption rate

(1)    (2) (3)    (4)
Complex diffusion treatment 0.252 0.304 0.036 0.036

(0.093)    (0.101) (0.016)    (0.026)
Simple diffusion treatment 0.155    0.189 0.036 0.006

(0.100)    (0.111) (0.017)    (0.022)
Geographic treatment 0.107    0.188 0.038    0.013

(0.096)    (0.110) (0.027)    (0.034)

Year 2 3 2 3
Observations 200    141 200    141

Mean of Benchmark treatment (omitted category) 0.420    0.543 0.038    0.075
SD of Benchmark 0.499    0.505 0.073    0.109

p-values for equality in coefficients
Simple = Complex 0.300    0.240 0.981    0.173
Complex = Geo 0.102    0.220 0.937    0.491
Simple = Geo 0.623    0.990 0.950    0.783

Notes: The reference group is the Benchmark treatment. The sample for year 3 (columns 2 and 4) excludes 
Nkhotakota district. The Any non-seed adopters indicator in columns 1–2 excludes seed farmers. The adoption rate 
in columns 3–4 include all randomly sampled farmers, excluding seed and shadow farmers.  All columns include 
controls used in the re-randomization routine (percent of village using compost at baseline; percent village using 
fertilizer at baseline; percent of village using pit planting at baseline); village size and its square; and district fixed 
effects. Standard errors are clustered at the village level.
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C. Discussion: Why Did Targeting Central Seeds Matter?

Targeting central seeds as in the Complex treatment led to higher adoption and 
was particularly important for avoiding the scenario in which no farmers adopted at 
all. In many diffusion models, this total failure of adoption would be quite surpris-
ing: generically, nearly everyone is connected to the network, and so some diffu-
sion should have taken place in Benchmark villages, too. Akbarpour, Malladi, and 
Saberi (2020) describe characteristics of diffusion processes where targeting has an 
advantage. First, in early stages of diffusion, targeting will speed up the adoption 
process. But with time, the diffusion process in Benchmark villages could catch up 
to Complex diffusion villages. However, the results in Section IIIA suggest that for 
many villages, a longer time horizon will not lead to substantially more adoption. 
With virtually no adoption after 3 years, it is unlikely those villages will ever have 
widespread adoption of pit planting.

Second, when information sharing is sufficiently infrequent, targeting may mat-
ter. We use data on conversations about pit planting that respondents had with others 
in the village to look directly at this explanation. Each respondent was asked ques-
tions about their relationship and conversations with the two seed farmers, randomly 
selected shadow farmers, and a random sample of other village residents.

Approximately 18 percent of farmers report talking about pit planting with trained 
seeds each year. This is a reasonably high rate of information passing, such that we 
would anticipate that the AMS dynamics of information eventually reaching the 
central farmers would be at play in a  SIR-type model. In fact we also observe that 
many ( 13–14 percent of respondents) are also having conversations with shadow 
partners about pit planting, likely because of those very dynamics. We can provide 
a lower bound on how much the experiment induced additional conversations about 
pit planting using the random variation in the experiment itself. For example, we 
compare the frequency of conversations with the Complex seed farmers in Complex 
diffusion villages, to the frequency of conversations with Complex shadow farmers 
in other villages. This is a conservative,  downwardly based estimate as many (and 
perhaps most, given how unusual pit planting was at baseline) of the conversations 
with Complex shadow farmers will also have occurred because of the experiment. 
However, this conservative estimate is sufficient to argue that it is unlikely that farm-
ers are not talking enough to generate an adoption cascade.

Table 3 shows that the experiment indeed induced seed farmers to discuss pit 
planting with fellow villagers using the following econometric specification:

   Y ij   = α +  β 1   Traine d j   +  δ 1    ComplexPartner j   

 +  δ 2   Simpl ePartner j   +  δ 3   Ge oPartner j   + Xγ +  ε v   .

Here,   Y ij    is an indicator for whether respondent i discussed pit planting with partner 
(either seed or shadow) farmer j;  Traine d j    is 1 if a partner was trained in pit plant-
ing19 and 0 otherwise;   ComplexPartner j    is an indicator for whether the partner j is 

19 This arises for complex partners in Complex diffusion villages, Simple partners in Simple diffusion villages, 
and Geo partners in Geo villages.
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a complex partner (either seed or shadow) and  Simpl ePartner j    and  Ge oPartner j    are 
defined analogously;  Xγ  are variables used in the  re-randomization routine, spec-
ified in the table notes, and district fixed effects;   β 1    is our coefficient of interest. 
Since we only consider conversations with treated partners and shadow partners, 
whether a potential conversation partner was actually trained is random and we can 
interpret the effect of training on conversations as exogenous.

We find that about 5 percent (ranging from 3.7 percent in year 1 to 6.4 percent in 
year 3) more respondents report a conversation about pit planting with trained seeds 
than with untrained seeds. In online Appendix Section A.4, we suppose that only 
these 5 percent of conversations are attributable to the training, and find that this 
lower bound exceeds the conversation threshold AMS establish in which random 
seeding should generate an adoption cascade in simple diffusion models.

An additional possibility that AMS highlight is that targeting may be more 
important in a range of diffusion models outside of the class of “simple diffusion” 
models they consider; in the next section, we consider an important model outside 
of this class: the threshold diffusion model.

IV. Complex Contagion

In this section, we propose that the threshold model we used to select seeds 
offers a potential explanation for why targeting central seeds matters for diffusion. 
As AMS make clear and Jackson and Storms (2019) formalize, targeting will be 
advantageous relative to random seeding when diffusion is governed by a thresh-
old model. The intuition for the importance of targeting in the threshold model is 
illustrated with the example network shown in Figure 1. In this thought experiment, 
we train two seed farmers in period 0 such that they are fully informed about a new 
technology. Diffusion occurs as farmers become informed in subsequent periods.

Table 3—Conversations Farmers Report Having about Pit Planting  
with Seed and Shadow Partners

        Conversation about pit planting

        (1) (2)    (3)
Trained 0.037 0.050 0.064
        (0.008)    (0.008)    (0.009)

Percent conversation with trained seed 0.179    0.181    0.190
Percent conversation with shadow partner 0.141    0.130    0.127

Observations 15,115    16,704    11,607
Year 1 2 3

Notes: The sample excludes seeds and counterfactual/shadow farmers. In our survey, we 
asked respondents about conversations they had with the seed farmers and randomly selected 
counterfactual/shadow farmers. In this table, we refer to farmers who would be seeds under 
the different treatments as partners, whether they are trained seeds or are shadow farmers. 
An observation is a respondent-partner-year pair. The following indicator variables are also 
included in the regressions: whether the contact that the respondent was asked about was a 
simple partner, complex partner or geo partner, irrespective of whether they were trained. All 
columns include controls used in the re-randomization routine (percent of village using com-
post at baseline; percent village using fertilizer at baseline; percent of village using pit planting 
at baseline); village size and its square; and district fixed effects. Standard errors are clustered 
at the village level.
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Suppose that farmers in this network become fully informed of a new technol-
ogy if anyone they are connected to has been fully informed. This is what we call 
simple contagion. In this network, the ideal seed farmers will be farmer 6 and then 
either farmer 1, 2, or 3. With any of these configurations, all farmers are informed 
in period 1. In general, quickly diffusing information about the new technology 
will be easy: in 70 percent of all possible seed pairings, all farmers will be fully 
informed by the end of the second period. Targeted seeding is not necessary in 
this model.

However, if farmers need to know two other farmers before they have suffi-
cient information to be fully informed, the diffusion process looks very different. 
Consider seeding farmers 5 and 8. During the first period, farmer 6 will become 
informed. In the second round, farmers 4 and 7 are informed. The diffusion process 
then stops with 3 out of a possible 6  non-seed farmers informed. There are 4 seed 
pairings which can achieve this 50 percent adoption rate, but it is not possible to get 
any higher.

Crucially, without a focus on targeting, there is a good probability that there is no 
diffusion: in 40 percent of seed pairings, there is no diffusion whatsoever. Threshold 
models therefore generate the empirical result we observed: when  noncentral farm-
ers are trained, there may be no diffusion at all.

In the next subsections, we will provide a  micro-foundation of the threshold 
model based on social learning. We then provide three pieces of empirical evidence 
that are consistent with the idea that complex contagion is a reason why targeting 
central seeds was effective in this setting.

A. A  Micro-Foundation for the Threshold Model of Diffusion

Social learning is known to be important in technology adoption decisions (e.g., 
Griliches 1957, Conley and Udry 2010). This section demonstrates how social learn-
ing naturally  micro-founds the threshold model. Our theoretical framework consid-
ers a learning environment with three characteristics. First, we suggest that adoption 
of a new technology takes place only when farmer beliefs about the profitability of 
the technology pass a critical threshold. Second, there are limited inherent benefits 
to learning about a technology if farmers are not ultimately persuaded to adopt it. 
Third, learning is costly: farmers must invest time to learn about and master a new 
productive technology, and revealing ignorance may subject them to social costs 
(e.g., Banerjee et al. 2020; Chandrasekhar, Golub, and Yang 2019).

These facts together mean that technology diffusion will be characterized by 
rational ignorance: farmers will be unwilling to pay learning costs in environments 

Figure 1. An Example Network
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where they are unlikely to update their beliefs enough to adopt the new technology. 
Moreover, if farmers aggregate multiple signals to update their beliefs via Bayes’ 
rule, technology adoption will be characterized by multiple equilibria: when few 
are informed about the technology, few will be willing to pay learning costs and 
few will adopt; when many are informed, more farmers will pay learning costs and 
ultimately adopt.

In online Appendix Section A.5, we adapt the naïve learning model in Banerjee 
et al. (2016) to include small costs of learning. We model technology diffusion 
as a learning process with three key phases: (i) the farmer has to decide whether 
to acquire information, (ii) she combines the new information with her priors 
via Bayes’ rule, and (iii) based on her revised information set, she then decides 
whether to adopt the new technology. We demonstrate that farmers who learn in 
this way follow a threshold model (Granovetter 1978; Acemoglu, Ozdaglar, and 
Yildiz 2011): a farmer will become informed about a new technology once at 
least λ of her connections become informed. Since uninformed farmers do not 
adopt, this means that farmers without sufficient informed connections will not 
adopt.

Taking the model to the data, the  micro-foundation is useful for a few purposes. 
First, it demonstrates that agricultural learning can lead to diffusion with thresholds. 
In our  micro-foundation, thresholds arise because farmers rationally choose not to 
learn when there is insufficient information in the network to change their behavior. 
This suggests that the learning problem could generate the results in Section IIIA 
because farmers need to be exposed to multiple informed agents to make an informed 
adoption decision. As a result, targeting central farmers is critical for diffusion: poor 
targeting may lead to no diffusion at all. Second, we can characterize the learning 
problems which lead to higher thresholds: thresholds are higher when the expected 
benefits are lower, or when signals are noisier. We therefore learn that seeding mat-
ters more in contexts where (in expectation) the benefits of adoption are relatively 
low; or in cases where a given signal is quite likely to be noisy. We return to this 
prediction in Section IVC.

B. Complex Contagion Model Simulations Compared to Empirical Results

There are three main pieces of evidence that suggest that complex contagion may 
have led to higher diffusion in the villages in which both seeds had high centrality. 
First, a key consequence of not targeting the right seeds in an environment where a 
sizable fraction of agents have a threshold above 1 is that the diffusion process can 
be completely stalled. We will discuss this evidence in this subsection. Second, we 
show heterogeneous treatment effects to argue that the complex diffusion treatment 
was particularly effective in exactly the contexts in which we would anticipate the 
treatment to be effective. And finally, we analyze  individual-level data to show that 
farmers who were directly connected to two seeds as opposed to just one seed are 
most likely to adopt pit planting.

Table 2 already demonstrated that complex diffusion led to a higher rate of “any 
 non-seed adoption.” Figure 2 presents the same evidence but side by side with what 
our simulations predicted. The left part of Figure 2 shows the predicted fraction of 
villages with “any adoption” from simulating the model for all sample villages when 
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λ = 1 (Simple contagion) and λ = 2 (Complex contagion).20 Since the goal is to 
compare these simulations to the actual data, we design the simulations to reflect the 
fact that we only observe a random sample of households in these  villages.21 The 
right part of Figure 2 shows the empirical counterpart: “any adoption” rates in the 
data in years 2 and 3.

When the threshold is set to λ = 1, diffusion is predicted to be widespread. 
In year 2, 85 percent of villages where Geo and Benchmark partners were trained 
are predicted to have some sampled diffusion, and that rate goes up to 94 percent 
with Simple and Complex partners. The predicted rates of “any diffusion” are even 
higher in year 3.

The risk of no diffusion increases if the diffusion process is characterized by com-
plex contagion. In that case, the model predicts that more than half of the villages 
assigned Simple, Geo, or Benchmark partners will not see any sampled diffusion at 
all in year 2. In contrast, when Complex seeds are trained, 70 percent of villages are 
predicted to experience some diffusion in year 2.

20 These simulations exclude 12 villages where at least one of the extension worker chosen seeds (Benchmark) 
was not observed in our social network census. This occurred because the spatial boundaries of villages are not 
always clearly delineated, particularly in Nkhotakota. 

21 The simulations use the full social network to predict becoming informed, measured here through adoption. 
We then sample from the full network to better mimic our data. In the model, the rate of any adoption is identical 
in years 2 and 3. If there was no adoption by year 2, there is no way there will be any additional adoption taking 
place in year 3. The sampling process, however, generates the increase over time observed in the figure. If the rate of 
adoption is low, as is empirically the case, then a random sample may miss all adopters. As the number of adopters 
increases over time, the random sample is more likely to pick up an adopter and hence the rate of any adoption 
increases over time in the figure.

Figure 2. Percent of Villages Where at Least Some Non-Seeds Adopted in Data and Simulations
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Comparing the theoretical simulations to the data on the right side of Figure 2 
shows that the data are more consistent with the patterns generated by a complex 
(rather than simple) learning environment in three distinct ways. First, simple con-
tagion simulations suggest that we should observe a much higher fraction of villages 
with some adoption than is true in the data. Second, simple contagion predicts that 
the “any adoption” outcome should not be very sensitive to the identity of the seed 
farmer who is initially trained. In contrast, the identity of the seed farmer dramat-
ically alters this outcome in the data. Finally, the complex contagion simulations 
predict that the Complex partners will maximize the fraction of villages with some 
adoption, which we observe in the data.

C. Heterogeneity Analysis

The  micro-foundation of the threshold model suggests that targeting Complex 
diffusion seeds will be particularly effective in contexts in which the information 
about pit planting will be most valuable. We use two different approaches to identify 
groups of such farmers. First, the Ministry of Agriculture recommends pit planting 
only for flat land, and labor costs of pit planting are lower on flat land.22 Focus group 
discussions in our sample villages confirmed that villagers thought pit planting was 
more suitable for flat rather than sloped land. We therefore expect farmers who own 
flat land will be most interested in information about pit planting. The second het-
erogeneity test we do exploits variation in knowledge about pit planting at baseline. 
While pit planting is in general a new technology in Malawi, there is heterogeneity 
across villages in how novel it is. In the median village, 4.3 percent of farmers 
reported having ever tried pit planting at baseline while 0.2 percent were currently 
practicing pit planting across all villages.

Table 4 explores the heterogeneity in treatment effects across these two dimen-
sions by interacting the randomized treatments with an indicator for “Farmer 
likely to receive a Good Signal.” This Good Signal variable is first defined as the 
farmer having flat land in columns 1 and 2, and then  redefined as “Village with 
 lower-than-median familiarity with the technology at baseline” in columns 3 and 4. 
Bad Signal refers to the converse of these characteristics. The equation estimated

   y ivt   =  β 0   +  β 1   Simpl e v   × Bad Signal +  β 2   Comple x v   × Bad Signal 

 +  β 3   Ge  o v   × Bad Signal +  β 4   Good Signal +  β 5   Simpl e v   × Good Signal

 +  β 6   Comple x v   × Good Signal +  β 7   Ge o v   × Good Signal + δ  X v   +  ϵ ivt   .

The reference group comprises of farmers who are likely to receive a bad signal 
in Benchmark villages. Our hypothesis is that among those who receive a positive 
signal, we will observe more diffusion in Complex villages if the true model is 
Complex.

22 Pit planting is possible on land with some slope, but in those cases, the pits need to be constructed differently, 
and our extension workers were not trained on that technique.



1936 THE AMERICAN ECONOMIC REVIEW JUNE 2021

Columns 1 and 2 show that adoption in year 2 is higher for farmers who have 
flat land in Simple, Complex, and Geo villages compared to farmers with flat land 
in Benchmark villages. In year 3, we see that Complex villages continue to have a 
larger adoption rate than Benchmark villages for farmers with flat land. Columns 3 
and 4 show that the Complex treatment performs best in villages where the tech-
nology was relatively novel. In this  subsample, the adoption rate is statistically 
 significantly higher in Complex diffusion treatment villages compared to both the 
Simple and the Benchmark treatments in year 3.

To summarize, these heterogeneity tests indicate that targeting central seeds is 
most effective precisely in the types of villages and for the types of farmers where 
information was most valuable, as the theoretical model helped us predict.

D. Knowledge and Adoption of Farmers by Social Distance to Seeds

In this subsection, we provide more direct evidence in line with the Complex 
Contagion model. We look at knowledge of pit planting and adoption decisions by 
individuals, as a function of how many seeds they are connected to. If thresholds are 

Table 4—Heterogeneity in Farmer-Level Adoption Decisions across Treatment Arms

(1) (2) (3) (4)

Bad Signal × Complex 0.006    −0.027    0.013    −0.045
(0.024)    (0.036)    (0.015)    (0.033)

Bad Signal × Simple −0.008    −0.036    0.019    −0.008
(0.024)    (0.037)    (0.017)    (0.034)

Bad Signal × Geo 0.002    −0.068 0.031    −0.054
(0.031)    (0.031) (0.035)    (0.032)

Good Signal −0.037 −0.062 −0.007    −0.064
(0.017) (0.024) (0.022)    (0.038)

Good Signal × Complex 0.059 0.067 0.054 0.083
(0.018) (0.025)    (0.024)    (0.030)

Good Signal × Simple 0.064 0.029 0.054 0.021
(0.021) (0.020) (0.029) (0.020)

Good Signal × Geo 0.042 0.022    0.026    0.031
(0.020)    (0.023)    (0.022)    (0.029)

Good Signal type Flat land Flat land Unfamiliar tech Unfamiliar tech
Year 2 3 2 3
Observations 3,546    2,645    3,954    3,023
Mean of Bad Signal in Benchmark 
 treatment (omitted category)

0.066    0.123    0.046    0.104

SD 0.248    0.33    0.21    0.305

p-values for equality in coefficients
Simple, good = Complex, good 0.828    0.113    0.986    0.032
Complex, good = Geo, good 0.482    0.103    0.297    0.138
Simple, good = Geo, good 0.364    0.755    0.351    0.680

Notes: The reference group is Bad Signal recipients in the Benchmark treatment. In columns 1 and 2, households 
with any flat land are those who have Good Signal = 1 and those with all sloped land have Good Signal = 0. In col-
umns 3 and 4, households in villages where less than 4.32 percent (the median) of households ever tried pit planting 
at baseline are those who have Good Signal = 1. Sample for year 3 (columns 2 and 4) excludes Nkhotakota dis-
trict. All columns include controls used in the re-randomization routine (percent of village using compost at base-
line; percent village using fertilizer at baseline; percent of village using pit planting at baseline); village size and its 
square; and district fixed effects. Standard errors are clustered at the village level.
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larger than one, those with connections to 2 seeds should be the most likely to adopt 
pit planting. Our identification strategy is summarized by the equation:

    Y iv   = α +  β 1   1TSeed s iv   +  β 2   2TSeed s iv   +  β 3   1Simpl e iv   +  β 4   2Simpl e iv   

 +  β 5   1Comple x iv   +  β 6   2Comple x iv   +  β 7   1Ge o iv   +  β 8   2Ge o iv   +  θ v   +  ε iv   ,

where  1TSeeds  is an indicator for the respondent being directly connected to exactly 
one seed farmer, and  2TSeeds  indicates the respondent was directly connected to 
two seed farmers. Seeds and shadows are removed from the analysis. Since network 
position is endogenous, we also control for whether an individual is connected to 
one or two Simple, Complex, or Geo (actual or shadow) partners, but these coef-
ficients are not displayed in the table. Identification therefore comes from varia-
tion in the experiment. As an example, we can compare two farmers who are both 
connected to two Simple partners, but where one farmer is in a village randomly 
assigned to the Simple treatment and his friend is trained as the seed, while the other 
farmer’s friend was not trained.

In the theoretical model, individuals have to become informed prior to adopting. 
As an empirical matter, it is unclear what level of knowledge is associated with 
“being informed” as used in the model. In Table 5, we therefore consider three vari-
ables which represent increasing levels of information: whether the respondent has 
heard of pit planting; whether the respondent knows how to implement pit planting; 
and whether the respondent adopted pit planting (which implies not only knowledge 
but also that the signals that the respondent received were sufficiently positive). In 
year 1, the training led to more information transmission to those directly connected 
to seeds. In particular, those who have a direct connection to both seed farmers had 
the most knowledge. This is true for both measures of “knowledge”: whether the 
respondent had heard of pit planting and whether they reported being capable of 
implementing it. Respondents with two connections are 8.4 percentage points more 
likely to have heard of pit planting than those with no connection to a seed. This rep-
resents a 33 percent increase in knowledge relative to the mean familiarity among 
unconnected individuals. This effect is also statistically significantly different from 
the effect of being connected to one seed ( p = 0.02). They are also 6.2 percentage 
points more likely to report knowing how to pit plant, a 108 percent increase over 
unconnected individuals and again significantly different from the effect of being 
connected to one seed ( p = 0.072). These knowledge effects are suggestive, but 
not conclusive, of a complex contagion process (l = 2) rather than simple conta-
gion. The increased awareness of pit planting and knowledge of pit planting among 
households connected to two seeds persists into year 2 (columns 2 and 5), and two 
connections is again significantly more advantageous than one connection ( p = 0.04 
and 0.095, respectively).

In Table 6, we look at adoption of pit planting. We see no effect on adoption in 
the first year (column 1) among individuals directly connected to either one or two 
seeds. However, we do observe an adoption effect in year 2. This temporal pattern 
of results is consistent with the  set-up of our theoretical model: individuals become 
informed in year 1 and then some choose to adopt in year 2. Column 2 shows that 
households with two connections to trained seeds are 3.9 percentage points more 
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likely to adopt in the second year than those with no connections, which represents 
a 90 percent increase in adoption propensity. Though the point estimate of the effect 
of two connections is considerably larger than the effect of a connection to one seed 
(3.9 pp compared to 1.2 pp), we cannot statistically reject that households with 
a connection to only one treated seed adopt less frequently (  p = 0.16). We also 
observe that individuals who are within path length 2 of at least one seed (that is, a 
friend of a friend) are 2.2 percentage points more likely to adopt.

Table 5—Diffusion within the Village: Knowledge

Heard of pit planting Knows how to pit planting

(1) (2) (3) (4) (5) (6)
Connected to 1 seed 0.002    0.030    0.016 0.017    0.021    −0.031

(0.024)    (0.022)    (0.029) (0.016)    (0.017)    (0.023)
Connected to 2 seeds 0.084 0.124 0.064 0.062 0.068 0.110

(0.038)    (0.040)    (0.064) (0.028)    (0.029)    (0.051)
Within path length 2 of at least one seed −0.018 0.016 0.067 0.005 0.022 0.028

(0.028) (0.027) (0.042) (0.018) (0.021) (0.028)

Year 1 2 3 1 2 3
Observations 4,155 4,532 3,103 4,155 4,532 3,103
Mean of reference group  
 (no connection to any seed)

0.223 0.286 0.391 0.057 0.095 0.147

SD of reference group 0.416 0.452 0.488 0.232 0.293 0.355

p-value for 2 connections = 1 connection 0.018 0.013 0.442 0.072 0.091 0.004

Notes: Sample excludes seed and shadow farmers. The reference group is comprised of individuals with no direct 
or 2-path-length connections to a seed farmer. Only connections to simple, complex, and geo seed farmers are con-
sidered (no connections to Benchmark farmers included). The dependent variable in columns 1–3 is an indicator 
for whether the respondent reported being aware of a plot preparation method other than ridging and then subse-
quently indicated awareness of pit planting in particular. In columns 4–6, the dependent variable is an indicator for 
whether the farmer reported knowing how to implement pit planting. In all columns, additional controls include 
indicators for the respondent being connected to: one Simple partner, two Simple partners, one Complex partner, 
two Complex partners, one Geo partner, two Geo partners, within 2 path length of a Simple partner, within 2 path 
length of a Complex Partner, and within 2 path length of the geo partner. Also included are village fixed effects. 
Standard errors are clustered at the village level.

Table 6—Diffusion within the Village: Adoption

Adopts pit planting

(1) (2) (3)
Connected to 1 seed 0.008    0.012    0.004

(0.011)    (0.015)    (0.017)
Connected to 2 seeds 0.016    0.039 0.014

(0.014)    (0.019)    (0.035)
Within path length 2 of at least one seed 0.013 0.022 0.037

(0.008) (0.013)    (0.021)

Year 1 2 3
Observations 4,203 3,931 2,998
Mean of reference group (no connection to any seed) 0.013 0.044 0.043
SD of reference group 0.113 0.206 0.203

p-value for 2 connections = 1 connection 0.522 0.164 0.760

Notes: See notes in Table 5 for details on the specification. The dependent variable in columns 
1–3 is an indicator for the household having adopted pit planting in that year. 
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The predictions of the model for which individuals learn about pit planting are 
weakened as time passes and knowledge diffuses through the network. In all three 
of the dependent variables in Tables 5 and 6, this diffusion can be observed through 
large increases in knowledge and adoption over time in our reference category: indi-
viduals with no direct connections to a seed. Among this group awareness increases 
from 22 percent to 39 percent from year 1 to 3, while “knowing how” to pit plant 
increases from 6 percent to 15 percent and adoption increases from 1 percent to 4 
percent. In principle, this diffusion should reduce power on our exogenous varia-
tion, as the number of connections to informed individuals becomes less correlated 
with the number of signals available to farmers. In practice, by year 3 we still see 
significance on the effects of two direct connections on one of our two knowledge 
variables (“knowing how” to pit plant, column 6 of Table 5), but we no longer see 
significant differences from direct connections in adoption or awareness of pit plant-
ing. Consistent with the hypothesis that this loss in precision is due to diffusion in 
the network, we see that adoption increases among those at moderate distance to 
the seeds in year 3: column 3 of Table 6 shows that households within path length 2 
are more likely (3.7 pp) to have adopted over those who are socially more distant.23

In summary, analysis using  individual-level data demonstrates that individuals 
who are initially close to the trained seeds are more likely to adopt than individuals 
with no direct connections, as one would expect if the experiment is inducing social 
 network-based diffusion. The data also suggest that having two direct connections, 
and not just one, is important for diffusion. This is further evidence consistent with 
the complex contagion model: farmers may need to know multiple informed con-
nections before becoming informed, and then subsequently adopting, themselves.

 V. Cost-Effective,  Policy-Relevant Alternatives to  Data-Intensive Targeting Methods

Our experiment was designed to be a proof of concept. We showed that target-
ing multiple highly central farmers improves technology diffusion, but eliciting the 
social network map to achieve these gains is expensive. Our  geography-based treat-
ment arm was an attempt to assess how much of the diffusion benefit derived from 
applying network theory could be achieved without having to resort to expensive 
data collection methods (since each household’s physical location is much easier to 
observe than network relationships). This specific approach was not an unqualified 
success. Online Appendix Table A2 showed that Geo seeds tended to have less land 
and were therefore poorer. Therefore, while the idea of using geography as a proxy 
for one’s network may be intuitive, the implications of geographic centrality may 
be  context-specific, and inappropriate as a  network-based targeting proxy in some 
cases.

Combining our experimental results with research on other inexpensive proce-
dures to identify the optimal seeds under complex contagion theory would make 
 network-based targeting more policy relevant and scalable. A few recent papers have 
suggested promising, less expensive methods for inferring network characteristics. 

23 This is a lower power test of the model than the direct connections test as it is imperfectly correlated with the 
number of informed, indirect connections to seeds (which is unobserved). We do not see a significant effect of this 
variable on knowledge outcomes, though coefficients are positive.
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Banerjee et al. (2019) suggests that despite the implicit challenges in learning about 
network structure, the simple question of “if we want to spread information about a 
new loan product to everyone in your village, to whom do you suggest we speak?” is 
successful in identifying individuals with high eigenvector centrality and diffusion 
centrality, who ultimately improve the diffusion process. Breza et al. (2020)  suggest 
that aggregate relational data collected from a smaller sample combined with a 
census can yield accurate estimates of network characteristics. Mobile phones may 
also be a way to inexpensively identify highly central individuals (Björkegren 2019; 
Blumenstock, Chi, and Tan 2019).

While we cannot test the viability of these approaches with our data, we can 
explore via simulations some alternate strategies that extension officers could use 
to identify useful partners. We suppose that an extension agent enters a village and 
randomly selects a small number of farmers to interview, and only asks one ques-
tion from our social network census: “Do you discuss agriculture frequently with 
anyone in the village? What is the name of the person you speak with about agricul-
ture frequently?” The response to this question generates a small list of names. The 
extension agent can then use the responses to select any  follow-up interviews. Using 
simulations, we predict that strategies which leverage the highest degree respondent 
from the random sample can approach the performance of the optimal targeting. 
More specifically, we can achieve 73 percent of the optimal adoption rate with just 2 
total interviews and  84–90 percent of the targeting gains with around 7 interviews.24

VI. Concluding Remarks

This paper provides evidence that diffusion of a new technology is accelerated by 
targeting information to central nodes within a social network. In a field experiment 
conducted in collaboration with the Ministry of Agriculture in Malawi, we selected 
farmers at different positions in the village network, leveraging threshold theory to 
suggest useful partners under different diffusion mechanisms. We found that farm-
ers were most likely to adopt pit planting in villages where the two trained seed 
farmers were centrally located within their villages’ social network. These partners 
were chosen to optimize diffusion under complex contagion: when thresholds for 
diffusion were larger than 1.

Because two central partners may be optimal under several diffusion models, 
we also explore whether the underlying diffusion process is  well characterized by 
complex contagion. We present multiple pieces of evidence consistent with this 
mechanism. In particular, we demonstrate that a total failure of diffusion occurs 
frequently in villages where experts selected the seed farmers. High thresholds can 
generate this risk. Moreover, farmers who are connected to two seed farmers are 
also most likely to adopt pit planting in the second year of the experiment. This is 
consistent with the fact that under complex contagion, multiple connections to seeds 
are needed before farmers adopt.

The methodological approach in this paper is not directly scalable for policy 
because of the high costs of collecting network data. But there is very promising 

24 See online Appendix Section A.6 for more details and alternative targeting strategies.
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work in the literature on ways to  cost-effectively identify central individuals within 
social networks (Banerjee et al. 2019). Our simulations also suggest that with only 
about 7 interviews per village, it is possible to identify individuals who can trigger 
the diffusion process. There are also additional options available to identify central 
nodes within a network depending on the context, including new approaches such 
as cell phone data.

Our paper also suggests a direction for future research. We provide evidence that 
agricultural technologies need to be seeded with multiple, central individuals to 
encourage adoption; this and other evidence in this paper is inconsistent with “sim-
ple” diffusion models. In contrast, the evidence in this paper is consistent with models 
where diffusion requires a concentration of information, such as complex contagion. 
Further research is needed to understand if farmers often face high thresholds to 
adoption. Our  micro-founded diffusion model suggests a key dimension to consider 
when assessing if contagion is likely to be simple or complex: the noise of the sig-
nal. Rosenzweig and Udry (2020) highlight the importance of aggregate stochas-
tic shocks in distinguishing the returns to agricultural investment, microenterprise 
investment, and human capital from  large-scale survey data. Farmers, entrepreneurs, 
and parents likely have access to far fewer data points than these  large-scale surveys 
when they attempt to infer the returns to investments and schooling, which, together 
with our model, may suggest that high thresholds bind for a number of problems 
of interest to economists. However, in contexts in which agents are learning about 
concepts that are less noisy than returns, say the availability of microfinance, how 
to enroll in social protection programs, or whether a firm is hiring, simple contagion 
may be the right model. Characterizing which productive investments should diffuse 
easily through social networks, and which need extensive and targeted diffusion, is 
crucial but beyond the scope of this paper.
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