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Abstract

This paper evaluates a low-cost, customized soil nutrient management advisory service in India. As a methodolog-
ical contribution, we examines whether and in which settings satellite measurements may be effective at estimating
both agricultural yields and treatment effects. The intervention improves self-reported fertilizer management prac-
tices, though not enough to measurably affect yields. Satellite measurements calibrated using OLS produce more
precise point estimates than farmer-reported data, suggesting power gains. However, linear models, common in the
literature, likely produce biased estimates. We propose an alternative procedure, using two-stage least squares. In
settings without attrition, this approach obtains lower statistical power than self-reported yields; in settings with dif-
ferential attrition, it may substantially increase power. We include a “cookbook” and code that should allow other
researchers to use remote sensing for yield estimation and program evaluation.

*We gratefully acknowledge financial support from ATAI and HBS’ Division of Research and Faculty Development. We thank Claudia Carbajal
Morelos and Arnesh Chowdhury for superb research management and support, Jaagruti Didwania, Azfar Karim, and Prathyush Parasuraman for
excellent research assistance, Tarun Pokiya for his agricultural expertise and suggestions, and the Precision Development (PxD) India team for
implementation support. Disclosure: Shawn Cole is a board member of Precision Development (PxD), an NGO delivering mobile phone-based
extension to small-holder farmers. Cole does not receive any financial compensation from the organization. Harigaya is, and Killeen and Krishna
were, employed by PxD. Cole: scole@hbs.edu; Harigaya: tharigaya@precisiondev.org; Killeen: gkilleen@berkeley.edu,
Krishna: apakrishna@gmail.com

Main manuscript file to compile Click here to view linked References

https://www.editorialmanager.com/devec/viewRCResults.aspx?pdf=1&docID=7582&rev=1&fileID=96913&msid=68a45d9b-510a-44b5-bc8a-0acb70c80bd8
https://www.editorialmanager.com/devec/viewRCResults.aspx?pdf=1&docID=7582&rev=1&fileID=96913&msid=68a45d9b-510a-44b5-bc8a-0acb70c80bd8


1 Introduction

Information technology has transformed farming in the developed world. Precision farming - farm management in-

formed by increasingly data-driven, dynamic, and accurate instructions - has been credited with raising profitability

by as much as 3% (Schimmelpfennig, 2016). The dramatic reduction in costs of collecting and disseminating infor-

mation in developing countries offers the tantalizing prospect that such approaches may improve productivity among

small-holder farmers as well. This paper evaluates how such an approach might be adapted in a low-income setting,

testing whether mobile phones can be used to deliver advice which is trusted and acted upon; and assessing the ability

of satellites to measure small-holder yields within the context of a field experiment.

We designed an experiment to test the effect of site-specific fertilizer recommendations on fertilizer adoption and

usage among cotton farmers in Gujarat, India, and evaluate our ability to measure yields. The sample for this exper-

iment consists of 1,585 farmers who had recently signed up for a mobile phone-based agricultural advisory service,

called Krishi Tarang (KT)1. The KT service provides comprehensive farming advice (on sowing, weeding, pesticides,

harvesting, etc.) via automated voice messages throughout a cropping cycle. We randomly selected half of these

farmers to receive plot-level soil fertility information and customized recommendations on three of the most common

macronutrients and one micronutrient fertilizer (Zinc). These recommendations were delivered in a scalable manner:

through the distribution of written information (Soil Health Cards and supplemental materials) prior to sowing, and

a series of appropriately timed automated push calls during the growing season. To measure yields, we use both in-

person surveys and satellite images. While remote sensing does require the mapping of individual plots, such mapping

need not be done at the start of the experiment, and may potentially be useful for evaluating outcomes of interventions

in settings where in-person surveying is difficult or expensive.

We examine the performance of satellites using two approaches to translate satellite data into yield predictions.

The results speak to the need to exercise caution when using methods evaluated using metrics such as mean-squared

error, which does not consider bias, in the context of evaluations, where bias is a first-order consideration. First, we

follow a common practice of estimating the relationship between satellite vegetation indices and yields using OLS.

The power gains to evaluating the intervention using this approach appear dramatic: we estimate that one could reduce

the sample size needed to detect a 5% increase in yields by 73% if they switched from farmer-reported to satellite-

measured outcomes using this approach. However, econometric theory suggests that this approach is likely to produce

biased yield estimates in the presence of measurement error because attenuation bias will compress the distribution of

satellite predictions. We propose the use of two-stage least squares (2SLS) to calibrate the yield prediction model as a

solution to measurement error. Our results indicate that a researcher using OLS calibration would estimate a treatment

effect 1/2 of the true size. Furthermore, power calculations indicate that one would need a sample size 25% larger to

detect a treatment effect using satellite data compared to farmer-reported data when using this calibration approach,

if there is no differential attrition. However, satellite data may still offer cost savings by reducing field activities, and

they offer large power gains if treatment effects are bounded to account for differential attrition.

With respect to the impact of site-specific fertilizer recommendations on farmer behavior change and yields, the
1KT service is provided by Precision Development (PxD).
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evidence is more mixed. Both treatment and control farmers received general agricultural advice via mobile phone.

The treatment group received additional advice on nutrient management, and most farmers listened to those messages.

We find changes in self-reported fertilizer usage that are large within the context of the literature, but small relative to

potential yield gains. Furthermore, neither noisy self-reported yields nor satellite data detect any yield gains from the

intervention, perhaps in part because rainfall was particularly poor in our intervention year.

Returns to fertilizers are highly sensitive to dosage and heterogeneous by local conditions (Duflo et al., 2008; Suri,

2011), and governments in many countries are seeking to promote site-specific nutrient management. For example,

since the launch of the Soil Health Card (SHC) scheme in 2015, the Indian government reports having conducted at

least 50 million soil tests and delivered over 200 million SHCs with plot-specific fertilizer recommendations. Evidence

suggests that Site-Specific Nutrient Management (SSNM) can lead to enhanced yields and improved soil quality under

a controlled environment (Khurana et al., 2007; Pampolino et al., 2007; Cassman et al., 2002; Matson et al., 1998),

though there is a paucity of literature examining whether locally-specific advice on fertilizer dosage and usage would

lead to similar results in real-world, small-holder settings. ICT may be particularly well suited to improve the ‘rate,

timing, source and placement’ of fertilizer, which could enhance the effectiveness of fertilizer application on plant

absorption (Pagani et al., 2013).

This paper makes contributions to two strands of literature, (i) the use of remote sensing, particularly in experi-

ments, and (ii) the promotion of agricultural technologies, such as fertilizer.

A recent body of research has demonstrated the potential of modern satellites to measure small-holder yields, and

changes in yields, with greater accuracy than surveys. For instance, Lobell et al. (2020) compare full-plot crop-cut

data, sub-plot crop cuts, satellite yield measurements, and farmer-reported yield data from small-holder maize plots in

Uganda. They find that satellite yield measurements are about as accurate as sub-sample crop cuts when compared to

full-plot crop cuts. For instance, satellite measurements explain 55% of the variation in full-plot crop cuts on pure stand

plots larger than 0.1ha, whereas sub-plot crop cuts explain 47% of the variation in yields on these plots. Furthermore,

satellite data is substantially more predictive of true productivity than farmer-reported data, and estimates of the returns

to fertilizer are similar using satellite and crop cut measurements. Jain et al. (2019) show a high correlation between

satellite wheat yield measurements and crop cuts in a split-plot experiment in India, and that satellite data can detect

the effect of a fertilizer spreader in some instances, although point estimates are much smaller when measured with

satellite data than crop cuts. Benami et al. (2021) provide an excellent overview of satellite measurements. They

note that remote sensing measurements are less strongly correlated with ground measures in low-income compared to

high-income economies, suggesting that satellites do measure yields with meaningful noise.

This paper examines the econometrics of satellite crop yield measurements in the context of treatment effect

estimation. We show theoretically that the prevailing approach of calibrating predictions using OLS is not robust to

measurement error, likely underestimating the magnitude of treatment effects. These predictions are consistent with

the fact that work such as Jain et al. (2019) estimate smaller treatment effects using satellite data and the fact that the

distribution of predicted yields is more compressed than in the case of crop cuts. We propose the use of instrumental

variables in the calibration stage to produce unbiased yield measurements in the presence of measurement error in
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satellite or ground-truth data. In our setting, one would estimate treatment effects about 1/2 as large when using

OLS versus 2SLS calibration (p < 0.01). This calibration also has important consequences for statistical power

calculations: we estimate that satellite data would reduce the sample size needed to detect a treatment effect by over

70% when using OLS calibration, compared to survey data, whereas 2SLS calibration leads one to conclude that a

larger sample size is needed when using satellites. This contribution relates to Proctor et al. (2023), which documents

that many remotely sensed variables in the United States produce biased parameter estimates. Our results similarly

suggest that measurement error in satellite crop yield measurements can bias treatment effect estimates in experimental

studies, but we propose the use of an instrumental variable approach which leverages knowledge about determinants

of crop yields, rather than multiple imputation, to address this concern.

This paper builds on a large literature that seeks to evaluate agricultural extension. It is most closely related to

Fishman et al. (2016), which evaluated in-person customized fertilizer advice in Bihar, India, but found that the advice

did not affect the farmers’ fertilizer application decisions. Fishman et al. (2016) propose limited trust and limited

comprehension as barriers; our intervention seeks to overcome both factors. Harou et al. (2022) similarly evaluate

plot-specific fertilizer recommendations, presented through in-person visits by agronomists, cross-randomized with

fertilizer subsidies in Tanzania. The authors find that information alone has no effect on fertilizer use or yields, but

combining soil fertility information with subsidies increases input use and yields relative to subsidies alone. Compared

to Harou et al. (2022), we examine a setting where fertilizer use is common but imbalanced across types, and we

examine a program that could readily scale to large numbers, using digital information rather than subsidies and

in-person meetings.

We make three contributions related to agricultural extension. First, inspired by work on vaccines in Pakistan

(Usman et al., 2011), we demonstrate that a human-centered design approach, emphasizing electronic delivery, gen-

erates more trust, and reported behavior changes, in a country where in-person visits have failed. In a “lab in the

field” setting, Cole and Sharma (2017) find that the majority of cotton farmers in their survey sample in Gujarat had

difficulty understanding recommendations in a government SHC but that digital and non-digital aid materials signif-

icantly improved comprehension levels. This paper uses an intervention very similar to Cole and Sharma (2017) and

demonstrates that farmers understand, trust, and report acting on customized advice. To our knowledge, most literature

on trust in digital information has focused on developed markets (e.g., Sillence et al. (2006), or Bonhard and Sasse

(2006)).

More generally, the paper contributes to a growing literature exploring how advice delivered via mobile phones

can increase technology adoption and improve agricultural outcomes (Casaburi et al., 2019; Fabregas et al., 2019; Cole

and Fernando, 2020), and the literature on gains to fertilizer use more generally (e.g. Beaman et al. (2013)).

Finally, our study contributes to the literature on the possibility of using precision farming techniques in low-

resource settings (Mondal and Basu, 2009; Maohua, 2001). On a positive note, we demonstrate that satellite data

can yield estimates of the impact of interventions with similar precision to survey data, suggesting that this approach

may help generate improved agronomic knowledge about the long-run effects of interventions, and that agronomic

knowledge may be transmitted back to farmers at low cost. However, the results also serve as a cautionary tale.
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Governments are increasingly investing resources to build databases on local conditions and farmer characteristics,

with the goal of providing increasingly customized advice. Our findings suggest that further research is warranted to

verify that the investment in soil health cards and soil mapping would bear fruit: while we find that farmers report

changing behavior, we do not observe yield gains.

2 Background and Experimental Design

While fertilizer use is widespread in India (over 75% of cultivated land uses fertilizer2), farmers have limited access

to advice about optimal quantities. For example, only 6% of farmers reported interacting with an extension agent in

the previous year (Cole and Sharma, 2017), and respondents in our baseline survey answered only 2.3 of six questions

about fertilizer correctly.

To improve soil health management, the Government of India launched a Soil Health Card scheme in 2015,

with the goal of testing soil at fine spatial resolution3, and delivering personalized SHC to every farmer in India

(https://soilhealth.dac.gov.in/). However, Cole and Sharma (2017) note potential shortcomings with

the government’s approach. Not all farmers may receive soil health cards. Moreover, the technical presentation of data

is difficult to understand, and only 8% of farmers in their sample in Gujarat understood the basic recommendations on

the SHC.

2.1 Intervention

This study was implemented in partnership with Precision Development (PxD), an NGO providing mobile phone-

based agricultural extension services to small-holder farmers. PxD operates Krishi Tarang (KT), a two-way voice-

based advisory service. Farmers subscribed to the KT service receive weekly push calls with information on seeds,

pesticides, planting, harvesting, and other agricultural decisions. Farmers can also call back into the system to access

their personal inbox, re-listen to the messages sent through push calls, and record any questions, which would be

answered by a PxD agronomist within two days. The service is offered for free and currently has more than sixty-

thousand active users, overwhelmingly growing cotton, across thirty-six districts of Gujarat, a state in western India.

Cole and Fernando (2020) evaluate an early version of the service, finding high demand for the service and

evidence of systematic changes in agricultural practices. An important potential advantage of ICT delivery advice is

the ability to deliver individually customized advice. To examine the feasibility of such an approach, PxD designed

a set of messages that explain the importance of soil fertility management and provided farmers with information on

plot-level soil nutrient levels, benefits, and recommended dosages of three macronutrient (UREA, DAP, MOP) and

one micronutrient (Zinc) fertilizers. The farmers are not tightly integrated into a value chain. But the nutrients we

recommend were readily available in our study area, in sufficiently small quantities that indivisibility constraints would

not bind.4

2Input Survey, 2011
32 x 2 hectare grid for irrigated farmland
4Only UREA was recommended for unirrigated cotton.
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The specific intervention we study is inspired by government campaigns to inform farmers about their soil health,

but designed to offer additional supportive content. For all farmers in our study, PxD sent field staff to collect a soil

sample from the farmer’s primary cotton plot as part of the baseline survey5; soil tests were performed by a local

agricultural university; and PxD applied the university’s fertilizer model, which is calibrated to maximize profits, in

combination with soil test results to generate fertilizer recommendations6 customized for the individual plot. Recom-

mendations depend on irrigation status, which can vary over the course of the season in this sample, because many

irrigation sources depend on rainfall. We use reported irrigation status at the time of basal fertilizer application to

determine whether farmers followed basal recommendations, and midline irrigation status to determine whether they

followed full season recommendations.

Treated farmers received customized recommendations through multiple channels while control farmers did not

receive soil health results during the study period. At the start of the agricultural season, PxD hand-delivered a Soil

Health Card (SHC) and two supplementary, customized, printed materials to each treated farmer in our sample. To

ensure that recommendations were understandable and actionable, we simplified the design of SHC using an iterative

process of testing the comprehension level and tweaking the design based on feedback from farmers in the study area

while maintaining the amount of information provided in the SHC (Appendix Figure 1).

In addition, supplemental materials were designed to help farmers understand the fertilizer recommendations:

a card (Appendix Figure 2) that lays out the timing and the quantities of different fertilizers recommended without

detailed information on nutrient values and a booklet (Appendix Figure 3) that provides pictorial illustrations of the

potential effects of each fertilizer type on plant health and yields.7

Finally, appropriately timed recommendations on fertilizer application were delivered through push voice calls

over three months between June and September, incorporated into PxD’s advisory service. Push calls were timed to

coincide with key stages in the crop growth cycle. In each call, PxD announced the topic of the call (macronutrient

fertilizers, MOP, or zinc fertilizers), specified whether the call was for irrigated or unirrigated cotton, explained the

potential benefits of the fertilizer(s), and provided the recommended application quantities (recommendations were

given in amount per area unit). If farmers did not pick up the call on a scheduled day, calls were sent again the day

after. On both days PxD made three attempts to reach farmers if they did not pick up the call. The share of farmers

that listened to the push call recommendations, presented in Appendix Table 5, was greater than 70% for every topic

except for mid-season zinc application.

2.2 Sample frame

The sample of this study consists of cotton farmers who registered into the KT service in the first quarter of 2018

across three districts (Surendranagar, Rajkot and Morbi) in the southwestern region of Gujarat. PxD administered a
5Farmers were informed that they would receive the SHCs within 10 months. The research team visited farmers in the control group after the

experiment to distribute SHCs.
6While in theory PxD could have drawn information from mass soil tests conducted by the government, previous work (Cole and Sharma,

2017) raised concerns about the accuracy of government soil tests. Technical details of the process of generating fertilizer recommendations are
summarized in Appendix Table 1.

7As the spread of smartphones and data plans increases, we imagine these visual aids could be delivered in video format at low cost.
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screening survey and identified farmers who owned a mobile phone, were planning to grow cotton in the upcoming

Kharif season, and were interested in receiving agricultural information through the KT service but had not subscribed

to the service before. The baseline sample, including all farmers who had a plot suitable for soil collection, was 1,585

farmers.8

2.3 Randomization and sample characteristics

Farmers in the base sample were stratified by block (district subdivision) and randomly assigned to a treatment or

control group (793 and 792 respectively). Table 1 presents summary statistics of the key variables at baseline by

experimental groups. Column (1) reports the control group mean and standard deviation of these variables. The

average age of farmers in the study was 43 years, over 95% of the sample indicated that their primary occupation

was self-employed farming, and more than eighty-percent of respondents were literate (could read a newspaper in

the local language). The average farmer had a total cultivated land size of about 3.5 hectares the year prior to the

intervention, slightly above the national average of 2.35 hectares among all cotton farmers in India. Even though the

Indian government launched a nationwide Soil Health Card scheme in 2015 with the plan of conducting a soil test for

every farmer, fewer than 15% of farmers in our sample reported ever having their soil tested. The remainder of the

table reports balance checks, for the randomization (Column 2), and for comparisons based on baseline characteristics

among the sets of farmers who did not attrit in subsequent surveys: a basal survey (conducted a few days after PxD

recommended applying the first application of fertilizer), a midline survey (conducted in October-December 2018), an

endline survey (conducted in February-May 2019), and a separate plot mapping exercise (conducted in March-May

2019). The p-value of an F-test of the joint orthogonality of the variables is included at the bottom of Columns (2) -

(7).

Table 1 shows that the proportion of baseline variables imbalanced between the two experimental groups is below

the corresponding significance levels, indicating that the two groups are well-balanced. We will discuss differential

rates of attrition in Section 8. In addition to the survey data, we obtain administrative data on KT service usage

including pickup rates and amount of time spent listening to messages. These data are available for both treatment and

control groups, though only treatment groups received supplemental fertilizer advice.

2.4 Empirical strategy

We estimate an ITT with OLS:

Yi = ↵b + �Ti +X 0
i
✓ + ✏i (1)

where Yi denotes the post-intervention outcome for individual i, Ti the treatment indicator, b the sub-district

fixed effects, and Xi is a vector of controls. We typically do not include controls when estimating treatment effects

on fertilizer use, whereas we do control for lagged productivity measurements when examining effects on yields to

improve precision.
8A soil sample could not be collected if there were standing crops from the previous season or if fertilizer had been applied after harvesting of

the previous year’s crop.
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One goal of this paper is to better understand whether and how point estimates and standard errors change depend-

ing on the methodology used to measure outcomes. To the extent possible, we seek to separately identify differences

due to changes in sample composition vs. changes in the noisiness of the measure. To that end, we report the results

of several regressions across four samples. First, we present results across the full sample. Second, we present results

across the sample of respondents that provided yield data. This sample size is equal to 1,341, which is 61 observations

smaller than the set of respondents that completed the endline survey because some farmers did not provide productiv-

ity data during the survey. Third, we restrict the sample to the 1,326 respondents for which we have 2018 satellite yield

data. Fourth, we examine the set of 1,291 respondents for which farmer-reported and satellite yield data are available.

3 Results

3.1 Take-Up: Listening Rates of Customized Fertilizer calls

Take-up of the information service, detailed in Appendix Table 5, was quite high, with 76% (unirrigated) to 88%

(irrigated) of farmers picking up and listening to basal fertilizer recommendations. In fact, 50% of the treated farmers

listened to the same recommendation more than once. Pick-up rates were lower for calls later in the season, but the

listening rates for all but one of the recommendations remained above 70%. In total the average treatment farmer was

exposed to 42 minutes of content on fertilizer application.

However, we observe some “crowd out” of information, as treated farmers are 3.5 percentage points less likely

to pick up subsequent weekly calls on cotton farming advice (Table 2); this difference is significant at the 1% level.

However, Column (2) shows that, unconditional on picking up, treatment farmers listened to approximately the same

amount of total non-fertilizer content, meaning that the total exposure to content was roughly equivalent.

The intervention appears to have increased trust in the KT service. Treated farmers rated non-fertilizer KT calls

higher by an average of 0.148 points on a 5-point scale, and they were 3.3 percentage points more likely to report using

a mobile phone-based advisory service to make agricultural decisions during the endline survey. The intervention also

increased reported trust in mobile phone-based advisory by over 0.2 points on a 5-point scale (p < .01).

3.2 Impact on fertilizer knowledge

Surveyors administered a 14-question multiple choice quiz about basic facts relating to fertilizer during the midline

survey to measure whether the treatment increased farmers’ fertilizer knowledge (See Appendix Table 2 for ques-

tions). Baseline knowledge was low, with farmers correctly answering approximately 3.2 questions on average. The

intervention increased fertilizer knowledge: farmers in the treatment group provided the correct response to 0.266 -

0.316 more questions, depending on the sample frame. The knowledge gains are statistically significant at the 1%

level across all samples. Taken together, the high adoption of the customized fertilizer recommendations, increased

trust in mobile phone-based advisory, and improved fertilizer knowledge indicate that trust and comprehension of the

fertilizer recommendations were high. The intervention was thus able to alleviate some of the information frictions
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that Fishman et al. (2016) identified as barriers to the adoption of government SHC recommendations.

3.3 Impact on fertilizer use

We next examine whether the customized fertilizer recommendations improved fertilizer use. The treatment push

calls heavily emphasized fertilizer application at the basal (first) dose, which agronomists at PxD thought may be

particularly inefficient. As a result, treatment effects on fertilizer use are reported for the basal dose and in aggregate.

In Table 3, we evaluate the effect of the experiment on self-reported basal fertilizer use, using three metrics: a

binary measure equal to one if the farmer reported using fertilizer that was recommended, or did not report using a

fertilizer that was not recommended, and zero otherwise; the total quantity of fertilizer applied; and the absolute value

of the difference between the amount recommended and the amount used. To simplify analysis and address multiple

hypotheses testing, we calculate a standardized index of fertilizer application, which is the equal-weighted mean of

standardized effect sizes for the four inputs (UREA, MOP, DAP, and Zinc). Column (1) indicates that treated farmers

were 0.232 standard deviations (p < .01) more likely to follow recommendations about which fertilizer types to apply

across the full sample. This effect was driven by UREA and MOP (Table 5). Column (2) shows that treated farmers

applied more fertilizer on average, with standardized joint effects of 0.363 standard deviations or larger across each

sample. Each difference is statistically significant at the 1% level. In terms of quantities, average usage increased by

11.4 kg/ha for UREA, 9.6 kg/ha for MOP, and 0.8 kg/ha for Zinc, corresponding to increases of 140%, 435%, and

1,061% over average doses in the control group. This was primarily due to changes at the extensive margin. Basal

application of DAP decreased by 4.7 kg/ha, but the value is not significantly different from zero. Column (3) shows the

intervention did not promote overuse of fertilizer: there was a statistically significant decrease in the distance between

the recommended fertilizer dose and the reported fertilizer dose, which dropped by 0.122 standard deviations averaged

across the four fertilizer types. Table 5 and Figure 2 break down changes in the fertilizer gap by fertilizer type. This

table is intended to provide evidence about which fertilizers drove changes observed in the standardized joint effects,

and that readers should be cautious interpreting changes in individual fertilizer usage absent a difference in the joint

effects due to multiple hypothesis testing. The largest reduction in the fertilizer gap occurred in the case of UREA,

driven by a decrease in under-application.

Table 4 shows that there are similar changes for full-season fertilizer application by treated farmers. Total fertilizer

application increased by an average of 0.237 standard deviations across UREA, DAP, MOP, and Zinc among the full

sample (p < .01). The standardized joint effects are all 0.239 standard deviations or larger among the three restricted

samples. Moreover, there is a statistically significant decrease in the standardized joint effect of the difference between

the suggested and applied fertilizer quantities of at least 0.076 across each of the four samples. We estimate that farmers

in the treatment group spent an average of about INR 300 more on fertilizer over the course of the season, relative to

a base of about INR 8,300 in the control group. However, differences in fertilizer expenditures are not significantly

different from zero. We suspect that this may be attributed in part to the fact that fertilizer expenditure data is noisy, but

the lack of a significant effect is also due in part to weighting of the fertilizer types. We are able to detect an increase in

the standardized joint effect on fertilizer usage because this statistic weights MOP usage, which had a large treatment
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effect and a small standard deviation due to low control usage, highly, whereas DAP and Zinc had the highest prices

so factor most strongly into revenue calculations, and there was not a statistically significant increase in the amount of

these fertilizers applied.

Although the intervention led to improved fertilizer application overall, there is little evidence that macro- and

micro-nutrient fertilizer use was more balanced among treated farmers. Table 5 and Figure 3 indicate that increases in

the use of UREA (a 15% increase) and MOP (a 306% increase) drove changes in total fertilizer application. There is

not a statistically significant change in Zinc application measured in kg/hectare, although treated farmers were almost

twice as likely to report applying any zinc (p < .01).9 In contrast to reports of UREA overuse, Figure 3 suggests that

the majority of our study sample under-applied UREA. The Government of India’s SHC dashboard also indicated that

over 80% of government soil tests found that soil nitrogen levels were low or very low as of 2020, suggesting that

optimizing UREA application could improve farm productivity.10

We do note, however, that fertilizer use may have been lower in the control group during the study year because of

low rainfall. Appendix Table 6 plots extensive and intensive margin fertilizer use for the study year. We observe large

control group declines in the use of UREA and MOP from 2017 to 2018, the two most commonly applied fertilizers.

Another limitation of our analysis is that we do not observe multiple years of fertilizer use. The fact that we

observe large increases in zinc adoption at the extensive margin but not in overall application amount implies that

treated farmers that applied zinc used less on average, although this difference is not statistically significant. One

possible explanation is that the intervention increased experimentation with micro-nutrient fertilizers that farmers

were not familiar with.11 Hence, one might expect treatment effects to change if the intervention were continued,

although this is only speculative since we lack the data to rigorously test this hypothesis.

3.4 Treatment effect on yields

We next examine whether improvements in fertilizer application across the basal dose and full season, driven by

reductions in the under-application of fertilizer, led to an increase in cotton yields.12 Table 4 shows that the point

estimate of the effect of the intervention on farmer-reported yields is just under 1 kg/ha across the full sample, a

productivity change of about 0.1% that is not statistically significant, no matter the specific sample restrictions we use.

Figure 4 similarly shows no difference in yields between the treatment arms.13

Our primary focus is on yields, not profits, because we collected more detailed data about yields. However,

Appendix Table 7 reports treatment effect estimates on cotton sale revenue which suggest that there was not a positive

treatment effect on cotton sales revenue, consistent with the lack of a treatment effect on yields. In fact, the treatment

effect on sales revenue in column (3) and expected sales revenue – which includes estimates of revenue from stored
9The extensive margin change in Panel D of Table 5 is only marginally significant since it equals 1 if farmers did apply zinc and had irrigation

at midline or did not apply zinc or have irrigation at midline. The share of control farmers that applied zinc is 5%, and the treatment effect is
4%. Farmers that applied zinc without irrigation generally expected to have irrigation, but their system was dependent on rainfall so their crop was
unirrigated at midline.

10https://soilhealth.dac.gov.in/NewHomePage/StateWiseNPKChart
11All farmers that applied zinc reported applying it to their full plot, so we are not detecting experimentation on a subset of the plot.
12Strictly positive yield values were winsorized at the 2nd and 98th percentile to reduce the influence of outliers at the low and high ends of the

distribution.
13An agronomist at PxD estimated that observed fertilizer differences could translate into 3-4% yield gains which we are not powered to detect.
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cotton – in column (4) are negative and statistically significant, but these effects would not survive corrections for

multiple hypothesis testing. The estimated effect on revenue net of fertilizer costs (column 6) is positive but not

significantly different from zero. We did not collect detailed data about inputs unrelated to fertilizer use. We thus view

the results in Appendix Table 7 as suggestive evidence that the intervention did not increase profits, but cannot reject

the null hypothesis that the treatment had a positive effect.

Although the point estimate of the effect of the intervention on yields is close to zero, using farmer-reported

yields results in a relatively wide 95 percent confidence interval, ranging from -77.95 kg/ha (-8.2%) to 79.93 kg/ha

(8.4%). As a result, we cannot reject a large increase in agricultural productivity, which, if true, could admit positive

benefit-cost analysis. In the next section, we evaluate whether satellites can estimate more precise bounds on the

treatment effect.

4 Using satellites to estimate treatment effects

In this section, we use satellite imagery to measure agricultural productivity and examine the performance of remote

sensing data relative to farmer-reported outcomes. Detailed information about the data and methodology used to

construct satellite yield estimates is presented in Appendix I. In addition, we include a technical appendix, which

contains a “cookbook” with step-by-step instructions for constructing satellite yield measurements; the instructions

are designed to be accessible to those without prior remote sensing knowledge, coding experience, or specialized

computing resources. Appendix Figure 4 outlines the steps required to calculate yield measurements using these

tools. The technical appendix includes commented code, which is also accessible in a GitHub repository at https:

//github.com/gkilleen33/rs-economics.

Briefly, satellite yield estimates were constructed from Sentinel-2 imagery, which spans the globe and is available

at no cost from the European Space Agency. Yield measurements were constructed as follows. First, we constructed

five vegetation indices (VIs) from the multispectral imagery: NDVI, GCVI, reNDVI, MTCI, and LAI.14 Second, we

calculated the median value of each VI for each plot (specifically, over the portion of the plot containing cotton) and

each satellite image. Third, we took the maximum VI value observed in each plot across a growing season. This

produced a data set containing one measurement of each VI per field in the 2016, 2017, and 2018 growing seasons.

We use the maximum VI value, rather than a different statistic of the VI values, because the maximum is more

robust to differences in sowing time.15 We then evaluated the performance of each VI individually by comparing VI

measurements to farmer-reported yield data. Finally, we selected the best-performing index, and we constructed yield

estimates by linearly fitting the VI values to farmer-reported productivity. As discussed later in this section, a common

practice is to calibrate the linear model using an OLS regression. However, we present evidence that this approach

produces systematic bias in yield predictions which is likely to attenuate treatment effect estimates. As a result, we
14Leaf Area Index (LAI), which is calculated using a neural network, is not technically a vegetation index. We describe it as a VI since it provides

a similar measurement of productivity.
15The maximum VI over the course of an agricultural season has been found to be highly predictive of yield in the remote sensing literature (e.g.

Lambert et al. (2018)). An exception might be if a large proportion of healthy crops is destroyed prior to harvest, for example, due to an extreme
weather event. This did not occur in our study.
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propose the use of 2SLS to estimate the calibration model.

4.1 Satellite yield measurement

We begin by evaluating whether satellite imagery can produce accurate estimates of cotton productivity in this sam-

ple. Table 6 demonstrates that there is a strong correlation between farmer-reported productivity and the satellite VI

measurements. The table presents regressions of the five VIs that we calculated on farmer-reported 2018 yield. The co-

efficients on yield are all positive and statistically significant, and the R2 exceeds 0.2 for each model and peaks at 0.287

in the case of reNDVI. Figure 6 confirms a strong and positive relationship between the VI values and farmer-reported

yield.

It is important to ensure we are able to pick up plot-level variation (rather than regional yield variation). First, we

note that including very fine geographic fixed effects (0.5 km x 0.5 km blocks) only marginally affects the slope, and

does not affect the statistical significance level of the relationship between the VIs and reported yields (the p-value on

the vegetation index with 0.5km x 0.5km fixed effects is reported below the “Results with grid FE” header). Second, we

perform a placebo test in which we calculate satellite VI values using dummy plot boundaries that contain areas close

to each field in the sample, but do not contain areas from the sample plots. Specifically, each plot boundary polygon

is replaced with a torus containing the area 100 meters from the plot to 200 meters from the plot. The relationship

between the placebo VI values and farmer-reported yields is still positive and statistically significant, reflecting spatial

differences in average productivity, but the R2 declines substantially relative to the VI values calculated using the actual

plot boundary data. These values are reported at the bottom of Table 6. For instance, the R2 between reNDVI and

farmer-reported yield using the plot boundary data is 0.287, but it is only 0.134 when the placebo data is used. When

we use the placebo plots and include 0.5 x 0.5 km grid fixed effects, there is no statistically significant relationship

between yield and any of the VI values. These results are consistent with the ability of satellite data to differentiate

between the productivity of individual plots in this sample.

In the technical appendix, we further demonstrate that the fit between farmer-reported yields and satellite VIs

is better on large plots than small plots (Appendix Table 10) and that satellites detect the increased importance of

irrigation during the 2018 drought (Appendix Table 11). Overall, these findings demonstrate that satellites can provide

a reliable measure of cotton productivity in this sample. The best-performing VI is reNDVI, so we calculate satellite

yield estimates using this index.

In order to convert from VI units – which lack an economic interpretation – to yields, one needs to calibrate a

prediction model. Based on prior research observing a linear relationship between NDVI and yields, such as Stama-

tiadis et al. (2010), and the fact that the relationship between reNDVI and yields appears to be linear in Figure 6, we

model this relationship linearly

Y ieldi = a0 + b0 · reNDV Ii + ⌫i (2)

where Y ieldi is farmer-reported yield in kilograms normalized by GPS-measured plot size in hectares. A com-

mon approach in prior work has been to estimate this calibration model via OLS (Burke and Lobell, 2017; Lambert
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et al., 2018; Lobell et al., 2019; Jain et al., 2019; Lobell et al., 2020, e.g.). Indeed, an earlier version of this paper took

exactly this approach; the journal’s referees raised concerns that this approach may understate variation in satellite

yield measurements. This prompted us to reconsider the use of OLS calibration; we argue that b̂OLS is likely to be

biased.

There are two sources of potential bias from OLS. First, if the true structural equation is in fact

reNDV Ii = a0 + b0 · Y ieldi + ⌫i (3)

then applying OLS to Equation 2, we would estimate b̂ols = 1
E[⌫2

i ]
b0, a standard result that estimating reverse regres-

sions via OLS produces bias. Equation 3 may be interpreted as stating that the observed vegetation index is a function

of yields and noise, an interpretation that we view as reasonable. Second, measurement error in reNDVI would pro-

duce attenuation bias in �̂OLS . This is likely since factors such as atmospheric haze are important in yield predictions

and satellite pixels are large, so they often overlap with areas outside of the plot.

A biased estimate of b0 does not necessarily produce imprecise estimates of yield. In fact, James and Stein

(1992) show that using estimators which are biased towards zero can reduce mean-squared error due to a bias-variance

trade-off. But if we consider the treatment effect on reNDVI,

reNDV Ii = �0 + �1Ti + !i (4)

then one can easily show that estimating the treatment effect of the intervention on predicted yields results in the

estimate

�̂ = b̂ · �̂1 (5)

By randomization, we know that �̂1 is an unbiased and consistent estimate of �1. But if our estimate of b0 is

biased, for instance in the case of b̂ols then the estimated treatment effect on yields will be biased. Intuitively, if one

underestimates the elasticity of yields with respect to reNDVI, then treatment effects on yields will be underestimated

because the vegetation index is not scaled accurately to the units of economic interest. In the context of estimating

economic parameters, producing an unbiased estimate of b0 is of first-order importance.

Proctor et al. (2023) introduces a multiple imputation methodology to correct bias in a broad set of remotely

sensed outcomes in the United States. While in principle this approach could work when predicting smallholder

yields, it requires a relatively large volume of accurate ground truth data, which may be scarce or very expensive

to obtain in developing country settings. Instead, we propose the use of 2SLS to estimate the calibration stage in

agricultural settings. Assuming valid instruments for the VI, this produces a consistent estimate of b0 and so estimation

on predicted yields will be consistent. Compared to the multiple imputation approach, this technique may be more

robust to measurement error in yields, requires fewer observations, and is conceptually easier to interpret. Furthermore,

Lewis and Linzer (2005) demonstrate that as long as predicted yields are unbiased, then researchers need not explicitly

account for uncertainty in the calibration stage when calculating standard errors about treatment effects so long as
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heteroskedastic-robust standard errors are estimated. Hence, the IV approach produces no loss in statistical power

compared to OLS calibration. We show that total rainfall over the growing season, observed from satellites, and

sowing date are strong instruments for reNDVI and that they produce a statistically and economically larger estimate

of b0, consistent with substantial bias from the use of OLS calibration.

Appendix I reviews the emerging literature on satellite yield measurement. Relative to existing literature, this

paper makes the following contributions:

First, we consider econometric challenges unique to the use of satellites in treatment effect estimation, particularly

in RCTs. Much of the existing work (eg Burke and Lobell, 2017; Lambert et al., 2018; Lobell et al., 2019, 2020)

evaluating the potential of satellites to measure crop yields has focused on statistics such as R2 or root mean-squared

error which are informative about the ability of satellites to detect a signal about crop yields. However, James and

Stein (1992) demonstrate that due to the bias-variance trade-off, estimates that minimize prediction error need not

be unbiased. We present evidence that the common practice of calibrating prediction models with OLS is likely to

produce substantial bias in treatment effect estimates, and we show that calibrating yield measurement using a set

of instruments that is widely available in agricultural studies can produce consistent estimates. These findings can

rationalize the fact that Jain et al. (2019) find smaller treatment effects and a compressed distribution of yields with

satellite data.

Second, we explore the effects of replacing farmer-reported yield data with satellite imagery on statistical power

using both OLS and 2SLS calibration. We find that, in the absence of differential attrition, one would be able to

detect a 5% yield increase with about 30% of the sample using satellite data calibrated with OLS compared to farmer-

reported outcomes. However, once we use 2SLS calibration that we argue is unbiased, the story flips and satellite

data has worse power to detect a treatment effect. Nonetheless, satellites may still offer advantages. Given corrections

for differential attrition, of which we find little evidence in this sample, satellites offer large power gains since survey

non-response is impossible. Even without differential attrition, a 30% increase in sample size to use satellite data may

result in overall cost-saving by allowing for fewer rounds of on-ground data collection. In addition, the use of satellites

also allows for long-run monitoring with no additional fieldwork.

Third, we provide a “cookbook” to assist researchers without remote sensing expertise in generating satellite yield

estimates and applying them to RCTs. We aim to make satellite yield measurement methods evaluated in previous

studies accessible to other disciplines so that the benefits of these advancements can be more widely realized. The

“cookbook” consists of detailed instructions and code presented in the technical appendix as well as a code repository

that is available at https://github.com/gkilleen33/rs-economics. We aim to update the repository to

reflect the best available methods, and we welcome other authors to contribute to it. None of the resources presented

require remote sensing or coding knowledge, and they use computing resources that are free to academics when

possible.
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4.2 OLS vs 2SLS yield calibration

We first examine how yield predictions vary if we calibrate the model using OLS versus 2SLS in Table 7 and Figure

7. All estimates include block fixed-effects. We exclude observations for which farmer-reported yield is 0, typically

meaning their crop failed, or greater than or equal to 3,900 kg/ha since these represent large outliers that may reduce

our ability to estimate the relationship. Two-stage least squares estimates use total rainfall from June to October and

sowing date – variables which are easily obtained in most agricultural settings – as instruments. These instruments

will produce a consistent estimate of the relationship between reNDVI and yields if they are correlated with yields

only through their relationship with reNDVI. Since reNDVI is a measure of biomass, we believe this assumption is

credible: the instruments are likely correlated with yields via their effects on vegetation but uncorrelated with sources

of measurement error like atmospheric interference for specific satellite images. Sowing date could be correlated with

measurement error if it were picking up the fact that farms were imaged by satellites at different stages of the growing

cycle. In our case, we believe this is unlikely since we take the maximum reNDVI value across passes to integrate out

differences in reNDVI due to different crop stages. Hence, we expect sowing date to be correlated with the maximum

of the index primarily due to its effects on the timing of the plant’s exposure to rain, affecting biomass and yields.

Columns (1) and (3) of Table 7 report direct estimates of the relationship. Using OLS, we estimate that a 1 unit

increase in reNDVI corresponds to a yield increase of about 4,000 kg/ha. In contrast, the 2SLS estimate is over 10,000

kg/ha, a difference between coefficients that is significant at the 1% level. The selected instruments are strong, the first

stage F-statistic is over 60, and a J-test of over-identifying restrictions fails to reject the exogeneity of the instruments.

We interpret this as evidence that the instruments are valid, indicating that researchers that use OLS calibration are

likely to estimate treatment effects under half of their true size. We note that since weak instruments or violation of

the exclusion restriction would likely bias the relationship towards OLS, one would likely still conclude that OLS

calibration is biased even if they were not convinced by our instruments.

We further test whether measurement error binds by estimating reverse regressions, and inverting the estimate

so they are comparable. These results are reported in columns (2) and (4). We find that the 2SLS estimates do not

meaningfully change, but the OLS coefficient more than doubles and is similar to the 2SLS estimates when we estimate

the reverse regression and then invert it. This supports the interpretation that reNDVI is equal to yields plus noise, and

that a calibration via linear regressions of yields on reNDVI would be biased.

We next plot predicted yields versus farmer-reported yields in Figure 7. Panel A plots predictions based on OLS

calibration. The distribution of predicted yields appears to be compressed compared to the farmer-reported estimates,

overestimating low-yield values and underestimating high-yield values. This is consistent with attenuation bias in

the calibration step. In contrast, the predictions based on 2SLS in Panel B appear to fall along the 45-degree line,

consistent with an unbiased estimate. Furthermore, the maximum of yield predictions is similar to the maximum of

farmer-reported values, although some negative yield values are predicted.
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4.3 Treatment effect on yields: Satellite vs farmer-reported data

We next examine how treatment effect estimates and standard error vary with farmer-reported versus satellite yield

data in Table 8 and Figure 8. The sample is restricted to observations for which none of the data sources is missing so

that we can directly examine how noise in the data affects estimates. The role of attrition is considered separately in

the following section.

Column (1) of Table 8 reports estimates in which the outcome is farmer-reported yield normalized by farmer-

reported plot size. Column (2) normalizes farmer-reported yields by GPS-measured plot size. Column (3) examines

satellite yield data calibrated with OLS, and column (4) uses satellite measurements calibrated with 2SLS. Each of the

regressions includes block fixed-effects and controls for lagged productivity measurements.

We find that neither point estimates nor standard errors of treatment effects change substantially when we nor-

malize farmer-reported yields by farmer-reported versus GPS-measured plot size.16 Standard errors do change sub-

stantially if we switch to satellite-measured outcomes, however, and the direction of change varies depending on

whether we use OLS or 2SLS calibration. In column (3), we see that standard errors drop by about 50% when using

OLS-calibrated satellite measurements. However, standard errors are over 20% larger in column (4) when considering

measurements calibrated with 2SLS. This is consistent with the fact that OLS calibration compresses the distribution

of yields, leading researchers to produce point and standard error estimates of treatment effects that are biased towards

zero. Figure 8 presents similar findings visually.17

4.4 Power calculations: Sample size changes with satellite imagery

In this section, we present power calculations that estimate how the use of satellite data would affect statistical power

in a setting in which plot boundary data were collected prior to the beginning of the intervention. We perform power

calculations using both OLS and 2SLS calibrated yield predictions to examine how the calibration decision affects

trade-offs between data sources. Unlike in the previous section, we carefully consider attrition. We further examine

how different sets of controls and differential attrition enter considerations.

Table 9 presents the sample size needed to detect a 5% change in cotton yields 90% of the time with 95%

confidence. Each sample size is estimated using a bootstrapping procedure described in detail in Appendix 8. In brief,

we draw 1,000 bootstrapped samples on a grid, then calculate the share of times that a test rejects if we impose the

alternative hypothesis. Column (1) reports estimates using farmer-reported data normalized by farmer-reported plot

size. Column (2) examines satellite predictions with OLS calibration, and columns (3) - (4) examine satellite data with

2SLS calibration. Column (4) differs from column (3) in that for each bootstrap draw the calibration is re-estimated,

whereas columns (2) and (3) use the calibration measured on the full sample. In practice, we find that this decision

does not significantly affect power calculations.
16Farmer-reported and GPS-measured plot sizes are strongly correlated in this sample. The R2 between the measures is about 0.8, the slope is

approximately 1, and the intercept is not different from 0 by a statistically significant margin.
17We also tested for treatment effects on satellite-measured yield the following season and found no treatment effect. We omit this analysis

because we did not collect data on fertilizer use the following season, and the control group received soil health cards at the end of the study year,
so we cannot determine whether we fail to detect an effect because there were no differences in fertilizer use or because there were differences in
fertilizer use but they did not increase yields.
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The first row of the table presents sample sizes assuming random attrition controlling for all available lags of the

outcome. We estimate that one would need a sample size of over 12,000 to detect an effect with farmer-reported data,

a well-documented fact that large sample sizes are needed to study agricultural effects because yield data is noisy.

Column (2) indicates that one could detect an effect with a sample size of about 3,500, about 70% smaller, if the OLS

calibration were unbiased. However, columns (3) - (4) raise the concern that these power gains may be due to biased

calibration compressing the distribution of yields: the sample size needed to detect an effect increases to over 15,500

if we consider satellite data calibrated with 2SLS.

Row 2 of column (4) examines how power changes if we only control for 1 lag of satellite data. We find that

the sample size increases to over 19,000, demonstrating the value of ANCOVA regressions (McKenzie, 2012). We

omit this calculation for the other two satellite measures due to computational power. If we control for no lags of the

dependent variable, the sample size in column (4) increases to about 21,000, and the sample size with farmer-reported

data increases to about 12,647. Hence, lagged controls appear to be more valuable with satellite than farmer-reported

data.

The estimates in rows 1 - 3 assume the attrition is random. Appendix Table 4 reports the likelihood of attrition

due to non-response to the basal survey (Column 1), midline survey (Column 2), endline survey (Column 3), farmer-

reported yield questions (Column 4), and plot mapping exercise (Column 5) conditional on treatment status, baseline

characteristics, and interactions between treatment and the baseline variables. The coefficients on treatment are all sta-

tistically insignificant, suggesting there is no differential attrition. In addition, the interaction terms between treatment

and the baseline variables are not jointly different from zero by a significant margin, with the exception of the basal

survey (p = 0.058).

However, in the real world, studies which deliver interventions are often subject to differential attrition. We

therefore examine how corrections for even the small levels of differential attrition due to survey non-response, as we

observed in our sample, affect power calculations, in the final row of Table 9. (Some cells in this table are blank as

non-random attrition is not realistic in satellite data). We estimate the lower Lee (2009) bound for each bootstrap, and

then determine whether the test still rejects. We estimate that one would need a sample size of over 34,000 if they

apply corrections for differential attrition and still have 90% power. Sample size falls dramatically because yield data

is noisy, so trimming has large effects on estimates. Hence, in the presence of differential attrition satellite data may

offer large benefits. However, our results indicate that with random attrition and 2SLS calibration, satellites do not

more precisely estimate treatment effects than farmer-reported data in this sample.

There are, however, several additional reasons that satellites may perform better relative to survey data in other

settings. For food crops, household consumption may introduce measurement error; this is not a concern in our

setting, with cotton. Similarly, farmers observe the weight of their yield when selling the crop, which may lead to

more precise survey data on yield. Second, differential attrition can pose serious threats to the validity of impact

estimates using survey data for a range of agricultural interventions and in settings where temporary migration is

common. Third, only two years of pre-intervention Sentinel-2 data existed at the time of this study, because of the

date that the satellite constellation was launched, but future work would benefit from more years of pre-intervention
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data, leading to improved precision and reduced required sample sizes. Fourth, given the natural, large variation

in agricultural outcomes, multiple seasons or years of post-intervention outcome data can substantially improve our

ability to understand the impact of agricultural interventions. Fifth, satellite measurements may become more accurate

as spacecrafts and the software used to process satellite imagery improve. Hence, we view our results as evidence that

satellite yield measurement may not outperform survey data in some settings. But our results still present promising

evidence that current publicly-accessible imagery sources can detect yield differences across smallholder plots, and

are likely able to detect treatment effects with sample sizes only modestly larger than survey data in this setting.

Depending on the characteristics of the target crop and the risk of differential attrition, satellites may be a more cost-

effective substitute for household surveys, or they may be a useful complement to in-person surveys.

In addition, satellite measures can be useful even when survey measures are used. For instance, satellites could

be used to predict what crops were sowed on the plots of farmers that did not participate in follow-up surveys. They

can also test whether yields are lower on these plots. These data points could help test for the effects of differential

attrition, avoiding the need to bound estimates.18

4.5 Costs of satellite yield measurements

Despite the fact that satellite data requires a sample size about 30% larger to detect a treatment effect, the data source

may still offer cost savings by reducing field activities. We estimate that plot mapping increased the per-farmer cost

of the endline survey from $9.30 per farmer to $11.90 per farmer due to increased labor costs associated with hiring

the plot mapping team, which operated separately from the survey team. In addition, 20 Garmin eTrex 30x devices

were purchased at a cost of about USD $200 per unit for the plot mapping. Assuming each device is used in five

survey rounds, on average, the cost per plot map of the devices is about $0.60. Taking into account the cost of the

GPS units, the cost of adding plot mapping onto an existing survey is about $3.20 per farmer. Since an independent

team of surveyors collected the plot mapping data, we estimate that the cost of plot mapping would be similar if it

were conducted as a standalone exercise assuming that the surveyors had the contact information and knew the village

in which each farmer’s plot was located. In contrast, the field team estimates that it would have cost about $3.11 per

farmer to complete a minimal endline survey in which only yield data was obtained.

In short, the marginal cost of adding plot mapping to an existing survey, or collecting plot boundary data as an

independent activity, is similar to a minimal survey. Hence, using satellite data may reduce research costs by about

25% if it replaces a full-length endline survey, but not if it replaces a minimal follow-up that only obtains yield data.

Satellite imagery may also allow researchers to forego additional rounds of data collection or conduct phone surveys

to measure outcomes that are less noisy than yields, and therefore reduce overall survey costs. We believe that both

of these benefits speak to the value of further research examining the ability of satellites to detect treatment effects in

agricultural interventions.

We focus on the cost of survey data as opposed to crop cut data because the majority of agricultural development

economics studies use farmer-reported data. Although crop cuts are more accurate and robust to surveyor demand ef-
18We are grateful to an anonymous referee that made this point.
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fects, they are several times more expensive than survey data. The fact that survey data is used far more often than crop

cuts suggests that economists have found surveys more effective given costs and practical constraints. Furthermore,

crop cuts are subject to differential attrition, which limits their advantages compared to survey data.

The tools included in the technical appendix and online toolkit use satellite imagery and cloud computing re-

sources that are free to use for academic research. Furthermore, the code we provide automates satellite image selec-

tion, processing, and the calculation of vegetation index values. Users are only required to upload their plot boundary

data to the Google Earth Engine and select the date range and parameters that they are interested in. The program

will then export a csv file containing a panel data set containing the VI measurements for each plot and each cloud

free satellite image available that can be imported into any statistical software and analyzed with standard econometric

methods. Hence, we expect that the estimates of field cost differences with satellite versus survey data closely reflect

total cost differences since the accompanying toolkit does not require significant time investments to generate satellite

yield measurements.

5 Conclusion

Increasing availability of new technologies creates opportunities to expand access to high-quality agricultural infor-

mation to small-holder farmers at a low cost. Governments, practitioners, and private-sector players in the agricultural

sector offer innovative solutions to generate and deliver more precise agricultural advice to farmers. Relatively little

is known, however, about how such information affects farmer behavior and agricultural practices. As more resources

become directed towards improving and scaling precision farming technologies for farmers in developing countries,

it is critical to understand how to best deliver agricultural information to facilitate improvement in farming practices

and agricultural outcomes. This study explores this question in the context of fertilizer usage in a field experiment

among cotton farmers in India. We provide initial evidence that customized agricultural advice, generated based on the

results of plot-level soil tests and delivered through soil health cards and mobile phones, could increase the adoption of

appropriate fertilizers and improve soil fertility management practices. Farmers receiving customized fertilizer recom-

mendations report a significantly higher likelihood of adopting recommended fertilizers, leading to a 0.082 standard

deviation reduction in the fertilizer gap.

Although the intervention improved fertilizer use, we find no evidence of a change in yields. There are several

reasons why the treatment may not have had an effect on agricultural productivity. First, the reported differences in

fertilizer use may be due to demand effects and not true differences in fertilizer practices. We think that this explanation

is unlikely because fertilizer recommendations were given in kilogram per vigha (a local area measurement), but we

collected fertilizer application data in terms of kilograms and then divided reported values by plot size to construct

the variables used in our analysis. Second, the null effect may be driven by unusually low rainfall, which could have

inhibited nutrient absorption. It is possible that the intervention would have had a positive effect on yields in a year

with normal rainfall in which crops are better able to absorb nutrients in the soil.19 Third, increased fertilizer use may
19Our measures of irrigation did not differentiate between systems that depend on rainfall and those that do not depend on rainfall, preventing us

from testing this hypothesis with heterogeneity analysis.
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have crowded out other inputs; unfortunately we do not have sufficient data to test this hypothesis.

The lack of yield increases among treated farmers despite changes in fertilizer practices suggests the need for

future research. Questions relating to the role of weather in customized fertilizer recommendations, the importance

of balanced fertilizer application, and the optimal set of recommendations given soil test results lack clear answers.

These topics are important given the Government of India’s significant investment in the Soil Health Card Scheme.

The disappointing results of this study suggest that customized soil fertility information may not always increase

productivity, even when comprehension and adoption of the advice is high. Hence, further research is necessary to

determine which fertilizer recommendations are effective in practice.

Finally, this study examines the potential of satellites to measure the yield effects of agricultural interventions.

We find high correlations between farmer-reported and satellite-measured yields, suggesting that satellites can mea-

sure yields reliably. While linear calibration suggests that satellites can produce more precise estimates, we present

evidence that OLS calibration biases treatment effect estimates. We propose the use of 2SLS calibration to solve this

problem, eliminating the precision gains of satellites under random attrition in this sample. This suggests the need for

more work examining the feasibility of using satellite data in RCTs, which raises econometric challenges that do not

exist if one’s goal is prediction and not parameter estimation.
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6 Appendix I: Measuring yields with satellite data

6.1 Background

Accurately measuring agricultural yields is essential to evaluations of interventions aimed at improving outcomes for

small-holder farmers. However, recent research demonstrates that farmer-reported yield data, which is used to evaluate

most interventions, is very noisy and potentially biased (e.g. Carletto et al. (2015); Lobell et al. (2020)). This makes it

particularly difficult to study low cost programs that have a small absolute benefit but potentially high benefit-to-cost

ratio, and can lead authors to focus on intermediate outcomes such as behavior change, which in turn makes it difficult

to compare the effectiveness of different intervention types.

A recent body of research has examined satellite yield measurements as an alternative to farmer-reported out-

comes. Researchers have used satellite imagery to measure agricultural productivity on industrialized farms for

decades, and a large body of research demonstrates that these techniques are reliable (Lobell, 2013). Studies in-

cluding Jain et al. (2016), Burke and Lobell (2017), Lambert et al. (2018), Lobell et al. (2020), and Lobell et al. (2019)

show that satellites can reliably measure small-holder yields, often with greater accuracy than survey data. Benami

et al. (2021) note that relationships between ground and satellite measures are consistently weaker in low-income ver-

sus high-income countries, however. This suggests that satellite measures are noisier in low-income settings, so it is

important to consider the role of measurement error in estimates.

Lobell et al. (2020) present strong evidence that satellites can measure smallholder crop yields. The authors find

that the adjusted R2 between satellite data and full-plot crop cut data is 0.55 on pure stand maize plots 0.1 hectares or

larger in Uganda. By comparison, the adjusted R2 between sub-plot crop cuts and full-plot crop cuts is 0.47 on these

fields. Moreover, satellites are able to capture the correlation between yield and key production factors, including

fertilizer use and soil quality, on both pure stand and inter-cropped plots. In contrast, farmer-reported yield data

explains very little variation in full-plot crop cut data, and farmer-reported productivity is, on average, over twice as

high as productivity measured using full or sub-plot crop cuts.

Jain et al. (2019) demonstrate that satellites can detect the effect of an intervention in a split-plot experiment. The

authors evaluate the effect of a product to more evenly spread fertilizer on wheat plots in India using sub-plot crop cut

data and satellite imagery. Results show strong agreement between the two sources of yield data at the plot (R2 = .55)

and sub-plot (R2 = .46) level. In addition, the authors show that satellite data can reliably detect productivity gains

associated with the intervention.

We expand on the satellite yield measurement literature by examining how satellite data performs in a randomized

controlled trial (RCT). We make three contributions to the literature, which are detailed in Section 4.1. We repeat these

contributions here for convenience.

First, we test whether the promising results of satellite measurement in the split-plot design evaluated in Jain

et al. (2019) carry over to RCTs. In a split-plot design, factors — such as atmospheric interference — that may cause

intra-plot noise to dominate experimental effects in an RCT are minimal because they influence each section of a plot

equally. Hence, results may not directly transfer to an RCT. Furthermore, we consider how measurement error may
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bias treatment effect estimates calculated using satellite data calibrated via OLS regressions. We show that this is

likely to lead researchers to underestimate treatment effects, and we note that the use of two-stage least squares in the

calibration step produces estimates robust to measurement error, but with higher mean squared error.

Second, we explore the effects of replacing farmer-reported yield data with satellite imagery on statistical power.

Satellite imagery may not offer power gains relative to farmer-reported outcomes if farmers can report yield changes

accurately. Since many sources of error in farmer-reported outcomes (e.g. non-standard units and variation in har-

vesting time) are serially correlated, controlling for pre-intervention farmer-reported productivity may be adequate

to obtain precise treatment effect estimates from survey data. We test whether satellite imagery improves statistical

power relative to farmer-reported data and quantify improvements so that researchers can determine whether the data

source would be cost effective in their studies. Our results show that using OLS calibration suggests that satellites

can dramatically improve statistical power, but the evidence indicates that this is because attenuation bias compresses

the distribution of predicted yields. If we instead use two-stage least squared to predict yields, we conclude that

researchers would need a larger sample size when working with satellite data, unless differential attrition exists.

Third, we provide a “cookbook” to assist researchers without remote sensing expertise in generating satellite yield

estimates and applying them to RCTs.20 We aim to make satellite yield measurement methods evaluated in previous

studies accessible to other disciplines so that the benefits of these advancements can be more widely realized. We aim

to update the repository to reflect the best available methods, and we welcome other authors to contribute to it. None

of the resources presented require remote sensing or coding knowledge, and they use computing resources that are free

to academics when possible.

6.2 Remote sensing data

We use three sources of data to construct and analyze satellite yield measurements. First, we use GPS plot boundary

data that was collected concurrently to the endline survey, but by a different survey team. Surveyors collected the plot

boundary data by walking the boundaries of each farmer’s plot with Garmin eTrex 30x GPS devices. Plot boundary

data is available for 1,389 plots and 1,326 cotton plots. Second, we use farmer-reported plot size and cotton yield

data that was collected during the endline survey. Third, we use satellite data from the Sentinel-2 constellation. We

downloaded and processed low-cloud imagery from one day in 2016, three days in 2017, and five days in 2018. This

paper includes a technical appendix which provides an in-depth description of each data source and information about

processing of the satellite imagery.

6.3 Methodology

Satellite yield estimates were constructed using the Sentinel-2 imagery, plot boundary data, and farmer-reported pro-

ductivity. We first calculated five vegetation indices (VIs) from the Sentinel-2 satellite imagery, which measure crop

health and are positively related to yield. We generate separate productivity estimates from each of the VIs, and then
20Available at https://github.com/gkilleen33/rs-economics
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use the best performing index to estimate treatment effects. The VIs are constructed by taking combinations of differ-

ent spectral bands. The equations used to calculate each VI are presented in Appendix Table 10, and Figure 1 presents

a sample true color image and Red-edge Normalized Difference Vegetation Index from a subset of the sample area.

Calculating VIs produces a single band image (for each VI) from the multispectral input images, where each

pixel is a georeferenced VI measurement. Each cotton field contains multiple pixels, which we reduce to a single

measurement by taking the median value of the pixels contained in the plot. This results in a panel consisting of one

measurement per farmer in 2016, three measurements per farmer in 2017, and five measurements per farmer in 2018

for each VI.

We next select, for each plot, the maximum VI reading obtained in each growing season. This approach reduces

the influence of sowing time, though in practice it makes virtually no difference, because cloud cover was not an issue,

and almost the entire sample was imaged at the same time.21 In other settings, we expect that taking the maximum VI

value across multiple satellite passes could substantially improve the accuracy of results and statistical power.

We assess whether satellite imagery can reliably measure small-holder cotton yields in this sample by regressing

the maximum VI values on farmer-reported productivity. We estimate the OLS regression

V Ii = ↵+ �Y ieldi + ✏i

where V Ii is the maximum vegetation index value observed in plot i in 2018 and Y ieldi is 2018 farmer-reported

yield in metric tons per hectare. We choose a linear form because Stamatiadis et al. (2010) find a linear relationship

between NDVI and cotton yields. Details about the software packages required to construct satellite yield estimates and

commented, adaptable code are available in the technical appendix and at https://github.com/gkilleen33/

rs-economics. These resources do not require remote sensing or programming knowledge to use.

We construct satellite yield estimates to use in treatment effect calculations from the best performing VI, which

is shown in Section 4.1 to be the Red-edge Normalized Difference Vegetation Index (reNDVI, see Appendix Table 9

for more information). To convert the VI values to yield values, we estimate the regression

Y ieldi = ↵+ �reNDV Ii + ✏i

where Y ieldi is farmer-reported total harvest in kilograms over GPS measured plot size in hectares and

reNDV Ii is the maximum reNDVI value observed in plot i. As discussed in the main paper, we estimate this re-

gression – referred to as the calibration step – using both OLS and two-stage least squares in which we instrument for

reNDV Ii using sowing date and total rainfall from June-October. We then linearly fit the VI values to yield using the

coefficients estimated from the regression.

We compare the utility of satellite yield measurements to farmer-reported data by estimating treatment effects

using both data sources. Power gains from satellite imagery may come from at least three sources: more precise
21Sentinel-2 satellites collect data in swaths that are roughly North-South and 290 km wide. If the sample crosses a swath boundary, then

Sentinel-2 will collect images of different parts of the sample on different days.
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measurements, reduced attrition, and multiple years of pre-intervention productivity data. If differential attrition is

a concern, then satellite imagery may also improve power because differential attrition can be eliminated. We esti-

mate treatment effects using satellite data with two specifications to disentangle the power benefits of more precise

measurements and multiple years of pre-intervention productivity data. The power benefits of reduced attrition and

differential attrition are examined in power calculations detailed in Section 4.4.

First, we estimate

Y Sat

2018,i = ↵b + �Ti + ✓1reNDV ISat

2017,i + ✏i

where Y Sat

2018,i denotes post-intervention satellite measured yield for individual i, ↵b denotes block fixed effects,

Ti denotes treatment, and reNDV ISat

2017,i is the 2017 Red-edge NDVI measurement, which is equivalent to controlling

for 2017 yield predictions since yield is an affine transformation of reNDVI.

Second, we consider

Y Sat

2018,i = ↵b + �Ti + ✓1reNDV ISat

2017,i + ✓2reNDV I2016,i + ✏i

where reNDV I2016,i is the reNDVI value observed in individual i’s plot in the single 2016 Sentinel-2 image that

we downloaded.
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Figure 1: Example Sentinel-2 imagery: October 28th, 2018

(a) True color composite

(b) reNDVI

Figure 1 presents sample Sentinel-2 imagery collected on October 28th, 2018 in a portion of the sample region that was selected due to a high density of sample
plots. Panel (a) presents a true color composite. Panel (b) presents a reNDVI image, which is the vegetation index used for satellite productivity measurements
in this paper. Polygons in red represent the boundaries of sample plots. Polygons in blue show the area on which the farmer cultivated cotton, if they did not
cultivate cotton on their full plot.
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Figure 2: Applied minus recommended fertilizer, basal dose (kg/ha)

(a) UREA (b) DAP

(c) MOP (d) Zinc

Figure 2 displays kernel density estimates for the difference between the applied and recommended basal fertilizer dose in kg/ha. Differences were calculated
by subtracting the lab recommended fertilizer dose from the farmer’s self-reported use. The density plots use a Epanechnikov kernel function. Estimates were
calculated separately for treatment (red) and control (blue). Values below 0 indicate that the farmer applied less than the recommended dose, and values above 0
indicate that the farmer applied more than the recommended dose. Differences are winsorized at the 99th percentile.
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Figure 3: Applied minus recommended fertilizer, total (kg/ha)

(a) UREA (b) DAP

(c) MOP (d) Zinc

Figure 3 displays kernel density estimates for the difference between the applied and recommended total fertilizer application (across the full growing season) in
kg/ha. Differences were calculated by subtracting the lab recommended fertilizer dose from the farmer’s self-reported use. The density plots use a Epanechnikov
kernel function. Estimates were calculated separately for treatment (red) and control (blue). Values below 0 indicate that the farmer applied less than the
recommended amount, and values above 0 indicate that the farmer applied more than the recommended amount. Differences are winsorized at the 99th percentile.
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Figure 4: Cotton yields (kg/ha)

(a) Survey data (b) Satellite data

Figure 4 displays cumulative density plots of productivity in kg/ha. Panel (a) uses farmer-reported total yields divided by the GPS-measured area on which the
farmer grew cotton. Positive yield values are winsorized at the 2nd and 98th percentiles. Panel (b) displays satellite measured yields based on a reNDVI (Viña
and Gitelson, 2005) calculated from Sentinel-2 L2A imagery. We constructed satellite yield measurements by calculating the median value of reNDVI values
contained within each plot in the sample on 5 dates and then taking the maximum reNDVI across the 5 images for each plot. This value was then linearly fitted to
farmer-reported yield data. Several linear predictions were negative and were recoded to 0.
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Figure 5: Rainfall

(a) Monthly

(b) Daily

Figure 5 plots average rainfall across the sample. Rainfall data was obtained from NASA’s Global Participation Measurement mission. The figures use final run
IMERG data accessed through the Google Earth Engine. Sub-plot (a) presents monthly rainfall values, in mm/day, from 2010-2019. The average value from
2010-2019 is also reported. Sub-plot (b) displays daily rainfall data from 2016-2019.
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Figure 6: Sentinel-2 vegetation indices vs farmer-reported yield (kg/ha)

(a) NDVI (b) GCVI

(c) reNDVI (d) MTCI

(e) LAI

Figure 6 plots vegetation index (VI) values against farmer-reported productivity. We calculated VI values by taking the median value of each VI pixel contained
in each sample plot for 5 Sentinel-2 images from 2018. We then took the maximum value across the 5 satellite images. Farmer-reported yield was calculated by
taking farmer-reported total harvest data and dividing it by GPS-measured plot area. Positive farmer-reported yield values were winsorized at the 2nd and 98th
percentiles.

33



Figure 7: Farmer-reported yields vs satellite predictions:
OLS and 2SLS calibration

(a) OLS calibration

(b) 2SLS calibration

Figure 7 plots farmer-reported yields against satellite yield predictions calibrated using an OLS first stage and a 2SLS first stage. The red line is at 45 degrees.
Farmer-reported yield was calculated by taking farmer-reported total harvest data and dividing it by GPS-measured plot area. Positive farmer-reported yield values
were winsorized at the 2nd and 98th percentiles.
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Figure 8: Treatment effect confidence intervals
Farmer-reported vs satellite measurements

(a) Monthly

Figure 8 plots confidence intervals of the treatment effect on productivity using farmer-reported and satellite yield data. The first three rows use all available data,
and the bottom five rows examine a restricted sample of data that is not missing for either data source. Rows 1 and 4 examine farmer-reported yield data, and each
of the other rows use satellite measurements. Rows 1, 4, 6 and 7 control for 2017 productivity. The remaining rows control for 2016 and 2017 productivity. Rows
labelled “satellite” use satellite predictions with 2SLS calibration, and rows labeled “Satellite, OLS” examine satellite yield predictions with OLS calibration. All
regressions include block fixed effects and robust standard errors.
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Table 1: Summary statistics, baseline

(1) (2) (3) (4) (5) (6) (7)

Control
(full sample)

Treatment - Control
(full sample)

T-C
(basal)

T-C
(midline)

T-C
(endline)

T-C
(farmer-reported

yield)

T-C
(satellite

data)

Age (baseline) 42.600 -0.155 -0.464 0.036 -0.073 0.020 -0.153
[11.485] (0.604) (0.633) (0.611) (0.623) (0.637) (0.643)

Literate 0.845 -0.017 -0.016 -0.023 -0.024 -0.028 -0.024
[0.362] (0.019) (0.020) (0.019) (0.020) (0.020) (0.020)

Total cotton land (2017) 3.602 -0.189 -0.124 -0.180 -0.197 -0.236 -0.090
[3.735] (0.187) (0.201) (0.189) (0.191) (0.196) (0.184)

Sampled plot size (2017) 2.080 -0.075 -0.040 -0.089 -0.103 -0.111 -0.073
[1.677] (0.082) (0.087) (0.081) (0.083) (0.085) (0.085)

Irrigation 0.911 -0.024 -0.016 -0.030⇤ -0.022 -0.031⇤ -0.016
[0.285] (0.015) (0.016) (0.016) (0.016) (0.016) (0.016)

Strong house 0.613 0.018 0.025 0.020 0.010 0.004 0.003
[0.487] (0.025) (0.026) (0.025) (0.026) (0.026) (0.027)

Own plough 0.420 0.009 -0.008 0.012 0.007 0.001 0.016
[0.494] (0.025) (0.027) (0.026) (0.026) (0.027) (0.027)

Crop insurance 0.570 -0.008 -0.007 -0.005 -0.009 -0.009 -0.021
[0.495] (0.025) (0.027) (0.026) (0.026) (0.027) (0.027)

Children 2.415 -0.101 -0.133⇤ -0.090 -0.104 -0.093 -0.107
[1.346] (0.068) (0.070) (0.069) (0.071) (0.073) (0.073)

> median education 0.377 -0.015 -0.006 -0.019 -0.018 -0.017 -0.019
[0.485] (0.025) (0.026) (0.025) (0.026) (0.026) (0.026)

Soil tested prior to study 0.142 -0.016 -0.016 -0.013 -0.017 -0.021 -0.012
[0.349] (0.018) (0.019) (0.018) (0.018) (0.019) (0.019)

UREA last season (kg/ha) 292.328 -19.055 -5.956 -20.435 -23.589 -27.914 -23.270
[444.784] (17.328) (9.115) (17.794) (18.552) (19.225) (19.568)

DAP last season (kg/ha) 156.450 -7.555 -8.901 -8.490 -8.777 -10.367 -8.882
[207.443] (9.747) (10.601) (10.009) (10.418) (10.852) (10.977)

MOP last season (kg/ha) 5.293 0.332 0.292 0.020 -0.024 -0.100 0.109
[23.010] (1.215) (1.303) (1.226) (1.278) (1.309) (1.342)

Zinc last season (kg/ha) 1.264 0.985 1.001 0.956 0.505 0.444 0.648
[6.557] (0.632) (0.696) (0.647) (0.400) (0.413) (0.418)

Observations 755 1,516 1,375 1,469 1,402 1,341 1,323
p-value of joint orthogonal-
ity

0.530 0.696 0.418 0.566 0.436 0.643

Standard deviations in brackets. Standard errors in parentheses. ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01

Column (1) reports the control group mean of the indicated variable across all baseline respondents. Column (2) reports the difference in means between the control and
treatment groups across the full sample of baseline respondents. Columns (3), (4), and (5) report the same value, but among respondents that completed the basal survey,
midline survey, and endline survey. Column (6) restricts the sample to observations for which farmer-reported yields are non-missing. Column (7) restricts the sample
to observations for which satellite yield measurements are available for 2016, 2017, and 2018. Education data was missing for 175 observations. Number of children is
missing for 25 observations. Crop insurance is missing for 20 observations. UREA and DAP usage last season are missing for 3 observations, DAP and MOP usage last
season are missing for two observations, and sampled plot size is missing for one observations. We interpolated the missing values of these variables using the median
value of each variable.
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Table 2: Treatment effect on KT Call Engagement, and Knowledge

Administrative data Endline survey Midline survey

(1) (2) (3) (4) (5) (6)
KT call
pickup

rate

Share of
total content

heard

KT call
rating

Use mobile
phone advisory

Trust in
mobile phone
advisory (1-5)

Fertilizer
questions

correct

Panel A: Full sample

Treatment -0.038⇤⇤⇤ -0.006 0.148⇤⇤ 0.033⇤⇤ 0.206⇤⇤⇤ 0.266⇤⇤⇤

(0.011) (0.014) (0.069) (0.014) (0.065) (0.103)

Observations 1,516 1,516 1,368 1,402 1,281 1,484
Adjusted R2 0.012 0.006 0.027 0.014 0.045 0.050
Control mean 0.864 0.554 3.757 0.906 3.267 3.210

Panel B: Respondents that provided yield data

Treatment -0.035⇤⇤⇤ -0.005 0.125⇤ 0.026⇤ 0.206⇤⇤⇤ 0.309⇤⇤⇤

(0.011) (0.014) (0.072) (0.014) (0.066) (0.107)

R2 0.018 0.012 0.026 0.015 0.050 0.053
Observations 1,341 1,341 1,247 1,341 1,228 1,339
Adjusted R2 0.014 0.008 0.022 0.011 0.045 0.049
Control mean 0.870 0.565 3.785 0.911 3.282 3.222

Panel C: Respondents for which satellite data is available

Treatment -0.033⇤⇤⇤ -0.003 0.151⇤⇤ 0.036⇤⇤ 0.245⇤⇤⇤ 0.316⇤⇤⇤

(0.012) (0.014) (0.072) (0.015) (0.066) (0.108)

R2 0.017 0.014 0.030 0.020 0.052 0.054
Observations 1,326 1,326 1,216 1,325 1,211 1,314
Adjusted R2 0.013 0.010 0.025 0.016 0.047 0.049
Control mean 0.865 0.565 3.798 0.906 3.262 3.188

Panel D: Respondents for which farmer-reported and satellite yields are available

Treatment -0.035⇤⇤⇤ -0.005 0.125⇤ 0.026⇤ 0.206⇤⇤⇤ 0.309⇤⇤⇤

(0.011) (0.014) (0.072) (0.014) (0.066) (0.107)

R2 0.018 0.012 0.026 0.015 0.050 0.053
Observations 1,341 1,341 1,247 1,341 1,228 1,339
Adjusted R2 0.014 0.008 0.022 0.011 0.045 0.049
Control mean 0.870 0.565 3.785 0.911 3.282 3.222
Robust standard errors in parentheses. ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01

The dependent variable in column (1) is the share of non-fertilizer KT calls that the farmer picked up. In column (2), the dependent variable is the average share of
non-fertilizer KT calls that the farmer listened to. Column (3) is the ranking given by farmers to KT calls in terms of usefulness, where 1 means that the calls were not
useful and 5 that the call were most useful. Column (4) examines whether farmers use a mobile phone advisory service to make agricultural decisions. In Column (5),
the dependent variable records the respondent’s reported trust in mobile phone-based advice on a scale of 1 (very low trust) to 5 (very high trust). Column (6) records
the number of questions, out of 14, in a quiz aimed to assess fertilizer knowledge were answered correctly. The sample size is lower in column (2) than in columns (1)
and (3) because not all users leave ratings. The sample size differs in columns (4), (5) and (6) because they use survey data, whereas columns (1) - (4) use administrative
data. Panel (a) includes the full sample. Panel (b) is restricted to respondents that provided 2018 cotton yield data and plot size information. Panel (c) is restricted to
respondents for which we have 2018 satellite yield data. Panel (d) is the intersection of Panels (b) and (c). All regressions include block fixed effects.
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Table 3: Treatment effect on basal fertilizer usage
Standardized joint effects across fertilizer types (basal survey)

(1) (2) (3)
Binary fertilizer
use consistent

with recommendation

Amount of
fertilizer

applied (kg/ha)

Distance between
suggested &

applied fertilizer (kg/ha)

Panel A: Full sample

Treatment 0.232⇤⇤⇤ 0.372⇤⇤⇤ -0.122⇤⇤⇤
(0.034) (0.067) (0.036)

Observations 1,308 1,308 1,308

Panel B: Respondents that provided yield data

Treatment 0.247⇤⇤⇤ 0.363⇤⇤⇤ -0.129⇤⇤⇤
(0.036) (0.069) (0.038)

Observations 1,173 1,173 1,173

Panel C: Respondents for which satellite data is available

Treatment 0.250⇤⇤⇤ 0.456⇤⇤⇤ -0.131⇤⇤⇤
(0.037) (0.079) (0.038)

Observations 1,143 1,143 1,143

Panel D: Respondents for which farmer-reported and satellite yields are available

Treatment 0.260⇤⇤⇤ 0.432⇤⇤⇤ -0.140⇤⇤⇤
(0.037) (0.077) (0.039)

Observations 1,108 1,108 1,108
Robust standard errors in parentheses. ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01

This table reports fertilizer application information for the basal (first) dose, which was emphasized in the advisory messages. Each dependent variable records the
standardized joint effect of the indicated outcome across UREA, MOP, DAP, and Zinc, which is an equally-weighted sum across the standardized treatment effects on the
outcome for each input type. In column (1), the dependent variable is assigned a value of 1 if the farmer applied the indicated fertilizer type and was advised to, or did
not apply the fertilizer type and was advised not to. The variable is coded to 0 if the farmer did not follow recommendations. In column (2), the dependent variable is
the amount of fertilizer that was applied during the basal dose, in kilograms per hectare. We use GPS-measured plot area in the denominator if available, and otherwise
use reported plot size. Plot area is divided by the portion of a farmer’s plot on which they reported applying fertilizer. Column (3) report regressions of the absolute value
of the difference between the recommended and applied fertilizer amount in kg/ha. Differences are winsorized at the 99th percentile. Panel (a) includes the full sample.
Panel (b) is restricted to respondents that provided 2018 cotton yield data and plot size information. Panel (c) is restricted to respondents for which we have 2018 satellite
yield data. Panel (d) is the intersection of Panels (b) and (c). All regressions include block fixed effects.
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Table 4: Treatment effect on full season fertilizer use and yields
Midline survey

(1) (2) (3) (4)

Total fertilizer
applied (kg/ha)

Distance between
suggested &

applied fertilizer (kg/ha)

Fertilizer expenditures
(Rs 2017)

Cotton yield
(kg/ha)

Panel A: Full sample

Treatment 0.237⇤⇤⇤ -0.082⇤⇤⇤ 333.316 0.991
(0.041) (0.031) (459.359) (40.276)

2017 productivity 0.247⇤⇤⇤

(0.022)

Observations 1,441 1,441 1,455 1,362
Adjusted R2 0.131 0.265
Control mean 8,317.397 952.787

Panel B: Respondents that provided yield data

Treatment 0.239⇤⇤⇤ -0.076⇤⇤ 231.412 4.697
(0.043) (0.033) (488.200) (40.560)

2017 productivity 0.248⇤⇤⇤

(0.022)

Observations 1,331 1,331 1,331 1,337
Adjusted R2 0.126 0.268
Control mean 8,478.365 952.293

Panel C: Respondents for which satellite data is available

Treatment 0.245⇤⇤⇤ -0.082⇤⇤ 623.243 -5.083
(0.044) (0.033) (474.947) (41.393)

2017 productivity 0.252⇤⇤⇤

(0.022)

Observations 1,294 1,294 1,294 1,287
Adjusted R2 0.136 0.271
Control mean 8,028.797 961.606

Panel D: Respondents for which farmer-reported and satellite yields are available

Treatment 0.249⇤⇤⇤ -0.083⇤⇤ 591.989 -1.132
(0.045) (0.033) (485.275) (41.684)

2017 productivity 0.252⇤⇤⇤

(0.022)

Observations 1,260 1,260 1,260 1,265
Adjusted R2 0.138 0.274
Control mean 8,150.738 961.211
Robust standard errors in parentheses. ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01

Columns (1) - (3) report fertilizer application information across all doses. In columns (1) and (2) the dependent variables record the standardized joint effect of the
indicated outcome across UREA, MOP, DAP, and Zinc, which is an equally-weighted sum across the standardized treatment effects on the outcome for each input type. In
column (1), the dependent variable is the total amount of fertilizer applied across all doses divided by the average area on which the respondent reported applying fertilizer.
Column (2) reports regressions of the absolute value of the difference between the recommended and applied fertilizer amount in kg/ha. Differences are winsorized at the
99th percentile. Column (3) reports total fertilizer expenditures across all doses, winsorized at the 99th percentile. Expenditures are calculated using price data obtained
through the Government of India Department of Fertilizers from June 19, 2017. Prices are reported in nominal 2017 Indian rupees. Column (4) reports the treatment effect
on agricultural productivity. Productivity is defined as farmer-reported total cotton yield, in kilograms, divided by plot size, in hectares. We use GPS measured plot size
when available, and otherwise use the farmer-reported value. We winsorized strictly positive yield values at the 2nd and 98th percentiles. The sample size differs between
the columns because the data comes from different surveys and because column (3) does not normalize the dependent variable by plot size. Panel (a) includes the full
sample. Panel (b) is restricted to respondents that provided 2018 cotton yield data and plot size information. Panel (c) is restricted to respondents for which we have 2018
satellite yield data. Panel (d) is the intersection of Panels (b) and (c). All regressions include block fixed effects.
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Table 5: Treatment effect on basal and full-season fertilizer usage by type
Basal and midline surveys

(1) (2) (3) (4) (5)

UREA DAP MOP Zinc Standardized
joint effect

Panel A: Binary fertilizer decision consistent with recommendation, basal

Treatment 0.117⇤⇤⇤ 0.0395 0.103⇤⇤⇤ 0.0248 0.232⇤⇤⇤

(0.0184) (0.0251) (0.0204) (0.0176) (0.0341)

Observations 1,308 1,308 1,308 1,308 1,308
Control mean 0.077 0.656 0.116 0.103

Panel B: Amount of fertilizer applied (kg/ha), basal

Treatment 11.41⇤⇤⇤ -4.730 9.628⇤⇤⇤ 0.849⇤⇤⇤ 0.372⇤⇤⇤

(2.518) (6.737) (2.029) (0.243) (0.0669)

Observations 1,308 1,308 1,308 1,308 1,308
Control mean 8.142 87.823 2.212 0.080

Panel C: Distance between suggested and applied fertilizer (kg/ha), basal

Treatment -9.229⇤⇤⇤ -3.712 -4.749 -0.198 -0.122⇤⇤⇤
(1.793) (3.359) (3.496) (0.387) (0.0358)

Observations 1,308 1,308 1,308 1,308 1,308
Control mean 123.822 64.988 176.627 18.794

Panel D: Binary fertilizer decision consistent with recommendation, full season

Treatment 0.0425⇤⇤ -0.0232 0.115⇤⇤⇤ 0.0390⇤ 0.0962⇤⇤⇤
(0.0191) (0.0242) (0.0244) (0.0229) (0.0219)

Observations 1,455 1,455 1,455 1,455 1,455
Control mean 0.816 0.645 0.351 0.324

Panel E: Amount of fertilizer applied (kg/ha), full season

Treatment 26.659⇤⇤⇤ -0.417 17.571⇤⇤⇤ 0.681 0.237⇤⇤⇤

(8.658) (5.118) (2.393) (0.461) (0.041)

Observations 1,440 1,440 1,438 1,434 1,441
Control mean 173.461 117.360 5.743 1.346

Panel F: Distance between suggested and applied fertilizer (kg/ha), full season

Treatment -16.609⇤⇤ -2.334 -12.367⇤⇤⇤ -0.523 -0.082⇤⇤⇤

(7.908) (3.612) (4.317) (0.469) (0.031)

Observations 1,440 1,440 1,438 1,434 1,441
Control mean 289.508 81.829 137.176 14.049
Robust standard errors in parentheses. ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01

This table reports fertilizer application information for the basal (first) dose, which was emphasized in the advisory messages, and across all doses. In panels (a) and (d),
the dependent variable is assigned a value of 1 if the farmer applied the indicated fertilizer type and was advised to, or did not apply the fertilizer type and was advised not
to. The variable is coded to 0 if the farmer did not follow recommendations. In panels (b) and (e), the dependent variable is the amount of fertilizer the respondent reported
applying during the basal dose in kilograms divided by the area on which they applied the fertilizer in hectare. Panels (c) and (f) report regressions of the absolute value of
the difference between the recommended and applied fertilizer amount in kg/ha. Differences are winsorized at the 99th percentile. In each panel, column (5) reports the
average standardized effect across columns (1) - (4), which is an equally-weighted sum across the standardized treatment effects on the outcome for each input type.
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Table 6: Predicting farmer-reported yields with satellite data
Endline survey, GPS data, and Sentinel-2 imagery

(1) (2) (3) (4) (5)
NDVI GCVI reNDVI MTCI LAI

Vegetation index 2.772⇤⇤⇤ 0.372⇤⇤⇤ 4.011⇤⇤⇤ 0.568⇤⇤⇤ 0.909⇤⇤⇤

(0.134) (0.022) (0.188) (0.034) (0.058)

Constant -0.369⇤⇤⇤ 0.025 -0.278⇤⇤⇤ -0.706⇤⇤⇤ 0.185⇤⇤⇤

(0.059) (0.052) (0.052) (0.092) (0.047)

Observations 1,291 1,291 1,291 1,291 1,291
Adjusted R2 0.271 0.227 0.287 0.203 0.215
Placebo adjusted R2 0.117 0.098 0.134 0.155 0.086

Results with grid FE (.5km⇥ .5km)
Observations 425 425 425 425 425
p-value 0.000 0.000 0.000 0.005 0.003
Placebo p-value 0.610 0.666 0.268 0.825 0.487
Robust standard errors in parentheses. ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01

Table 6 reports the results of regressions of farmer reported productivity on satellite vegetation indices (VIs), calculated using Sentinel-2 L2A multispectral satellite
imagery. Farmer reported productivity is calculated as farmer-reported total yield in metric tons divided by the area in hectares on which the farmer grew cotton. We use
GPS-measured area. The index values were derived by taking the median pixel value observed in the area where the farmer grew cotton. We calculated VI values for 5
satellite images, and then we took the maximum value across the five images for each plot. We removed outlying observations in farmer-reported data by winsoring strictly
positive values at the 2nd and 98th percentiles. The placebo adjusted R2 reports results in which we calculate VIs using placebo plot boundary data and then run the same
regressions. The Grid FE results report the results of regressions on yield per hectare on .5km by .5km grid fixed-effects using robust standard errors. Specifically, we
report the p-value on the vegetation index value using the actual plot boundary data and the p-value on the vegetation index using the plabebo plot boundary data below
the “Results with grid FE” header. The sample size after singletons are dropped, p-value using the actual plot boundary data, and p-value using the placebo plot boundary
data are reported.
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Table 7: OLS vs 2SLS estimates of the relationship between reNDVI and yields:
Endline survey, GPS data, and Sentinel-2 data

(1) (2) (3) (4)

OLS calibration OLS calibration
Reverse regression 2SLS calibration 2SLS calibration

Reverse regression
reNDVI 4,049.190⇤⇤⇤ 11964.867⇤⇤⇤ 10129.397⇤⇤⇤ 10162.435⇤⇤⇤

(182.469) (467.029) (1,176.034) (1,183.937)

Constant -198.233⇤⇤⇤ -2657.420⇤⇤⇤ -2104.737⇤⇤⇤ -2114.976⇤⇤⇤
(63.307) (158.338) (367.617) (370.591)

Block FE Yes Yes Yes Yes

Observations 1,197 1,197 1,066 1,066
First-stage F 61.228 125.429
J-test p 0.615 0.615

Robust standard errors in parentheses. ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01

Table 7 examines how estimates of the relationship between reNDVI and farmer-reported yields change if we use OLS vs 2SLS to
estimate it. All columns exclude farmer-reported yield values equal to 0 or above 3,900 kg/ha to reduce noise. Columns (1) and
(3) estimate models directly, whereas (2) and (4) estimate reverse regressions then invert the parameters. We winsorized positive
farmer-reported yield values at the 2nd and 98th percentiles. We use total rainfall between June and October 2018 and sowing date as
instruments. All regressions include block fixed-effects.
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Table 8: Treatment effect on yields (kg/ha): satellite vs. survey data
Endline survey, GPS data, and Sentinel-2 data

(1) (2) (3) (4)
Reported yield
and plot size

Reported yield
GPS plot size

Satellite yield
OLS calibration†

Satellite yield
2SLS calibration

Treatment -4.850 0.984 -3.008 -7.524
(38.655) (42.283) (21.068) (52.704)

2017 productivity Yes Yes Yes Yes

2016 productivity No No Yes Yes

Block FE Yes Yes Yes Yes

Observations 1,261 1,261 1,261 1,261
Adjusted R2 0.248 0.273 0.533 0.280
Control mean 894.276 961.873 952.225 935.513
95% CI: [ -80.687, 70.986] [ -81.969, 83.936] [ -44.341, 38.325] [ -110.922, 95.874]

Robust standard errors in parentheses. ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01

†The standard error in column (3) is likely biased and is included only for comparison.
Table 8 examines how replacing farmer-reported yield measurements with satellite data affects estimates of the treatment effect on
agricultural productivity (kg/ha). All columns examine a restricted sample for which none of survey yield data, survey cotton cultivation
area, or satellite yield data are missing. Columns (1) and (2) examine farmer-reported total productivity divided by farmer-reported
plot size and GPS-measured plot size respectively. We winsorized positive farmer-reported yield values at the 2nd and 98th percentiles.
Columns (3) and (4) consider satellite yield measurements obtained by taking the median Red-edge NDVI (Viña and Gitelson, 2005)
pixel value contained in each plot for each satellite pass, then taking the maximum reNDVI value across the satellite images and linearly
fitting it to farmer-reported yield (using GPS area in the denominator, not farmer-reported plot size). Column (3) considers a satellite
prediction model calibrated with OLS, and column (4) examines a model calibrated using 2SLS.
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Table 9: Sample sizes needed to detect a 5% change

(1) (2) (3) (4)

Survey yield
Survey area

Satellite yield
OLS calibration

Satellite yield
2SLS calibration

Satellite yield
2SLS calibration

Two-step bootstrap

N, all outcome lags 12,411 3,506 15,524 15,524
N, 1 satellite lag 19,530
N, no outcome lags 12,647 20,932
N, Lee bounds 34,300

Table 9 displays the sample size needed to detect a 5% change in cotton yields (e.g. kg/ha) with 95% confidence and 90% power.
Columns (1) uses farmer-reported productivity divided by farmer-reported plot size. Columns (2) - (4) use Sentinel-2 data. Column (2)
uses OLS calibration and columns (3) and (4) use 2SLS calibration. Columns (2) and (3) calibrate based on the relationship between
reNDVI and yields on the full sample, whereas column (4) calibrates the model based on a 2SLS regression on each bootstrapped sample.
All power calculations were obtained using a bootstrap. Sample sizes for Lee (2009) bounds were obtained based on the lower bound.
The top row provides the sample size using all available lags as controls, and subsequent rows show how the sample size changes if
controls are excluded.
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Appendix A: Figures

Appendix Figure 1: Soil Health Card Developed by PAD
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Appendix Figure 2: Supplement to Soil Health Card

47



Appendix Figure 3: Booklet
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Appendix Figure 4: Process for calculating satellite yield measurements

Use Garmin ($200 each) or sim-
ilar device to walk field plots

Follow the instructions in the technical
appendix or at https://github.
com/gkilleen33/rs-economics
to set up the Python environment and
register for the Google Earth Engine.

Upload the plot boundary data
to the Google Earth Engine.

Download the yield measurement
code from the technical appendix

or https://github.com/
gkilleen33/rs-economics.

Execute the code.

Download CSVs with vegetation
index measurements from Google
Drive and analyze in typical statis-

tics software (e.g. Stata or R).
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Appendix B: Tables

Appendix Table 1: Generating recommendations from soil test results

A four-step process was followed to generate customized fertilizer recommendations for each farmer:
1. Before the start of the agricultural season, we collected soil samples from one of the plots owned by each farmer in the sample
and tested the soil samples for pH and EC and various macronutrients (nitrogen, phosphorus, potassium) and micronutrients (zinc,
sulphur, iron). The soil test results contained the quantity of each nutrient in the soil and the level of each nutrient (low, medium or
high).
2. We used nutrient levels to generate nutrient-specific recommendations. For doing so we used a template developed by Junagarh
Agricultural University, in which quantities of nutrients are recommended for each of three nutrient levels. The recommended nutrient
quantities for every nutrient label are the following:

Low Medium High
Nitrogen (N) 300 240 180
Phosphorus (P) 62.5 50 37.5
Potassium (K) 187.5 150 112.5
Zinc 25 20 15

3. Nutrient levels were then converted to fertilizer recommendations. We focused on three macronutrients (nitrogen, phosphorus and
potassium) and one micronutrient (zinc for irrigated cotton and sulphur for unirrigated cotton).
In irrigated plots HYV seeds are used. These seeds require adequate amounts of the three macronutrients selected. Nitrogen and
phosphorus are important for crop development and potassium improves water use efficiency, builds crop resilience against certain
diseases and improves fibre quality. Application of zinc was also recommended because plants from HYV seeds respond better
to macronutrients when micronutrients are available in adequate quantity and most plots in the study area were deficient in this
micronutrient.
In non-irrigated or rainfed plots, non-HYV seeds are used. Nitrogen and sulphur were recommended because the nutrient require-
ments can be met with these two nutrients.
Our fertilizer recommendations were in terms of quantities of UREA, Di-ammonium Phosphate (DAP), Muriate of Potash (MOP),
Zinc Sulphate (Zinc) and Gypsum. The table shows the nutrients contained in each fertilizer.

Nutrient content (%)

Fertilizer Nitrogen Phosphorus Potassium Zinc Sulphur
UREA 46 x x x x
DAP 18 46 x x x
MOP x x 60 x x
Zinc Sulphate (Zinc) x x x 36 14
Sulphur x x x x 100
The nutrient levels in each fertilizer were used to calculate the exact quantity of fertilizer recommended for each plot. Our previous
field surveys had shown that all the recommended fertilizers were easily available, reasonably priced and were effective for supplying
nutrients to soil.
5. Given that fertilizers are more effective when applied in multiple small doses at various crop stages, total fertilizer recommendations
were split into dose-wise recommendations. All doses contained equal quantities of fertilizer. Following are the number of doses in
which application of various nutrients is suggested:

Irrigated Crop Un-irrigated crop

Number of doses Timing of doses Number of doses Timing of doses

Nitrogen 4

- At time of sowing (basal dose)
- One month after sowing
- Two months after sowing
- Three months after sowing

2 - At time of sowing (basal dose)
- One month after sowing

Phosphorus 2 - At time of sowing (basal dose)
- One month after sowing 0

Potassium 1 - At time of sowing (basal dose) 0
Zinc 1 - At time of sowing (basal dose) 0
Sulphur 1 - At time of sowing (basal dose) 1 - At time of sowing (basal dose)
Fertilizer and nutrient recommendations were generated ‘per unit of area’ to make recommendations farmer friendly. This means that
the recommendations were generated for the area unit in which a farmer had reported crop area at baseline. For example, if a farmer
had reported land in acres, then customized fertilizer recommendations were made in per-acre terms. Also, since irrigation status of
crops is uncertain for farmers in India at the start of the agricultural season, recommendations for both irrigated and unirrigated cotton
were generated for each farmer.
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Appendix Table 2: Fertilizer knowledge questions

Question Correct Answer
1. Which main nutrients are required by irrigated cotton for

growth?
Nitrogen, Phosphorous, and Potash

2. Which of the following is main nutrient in UREA? Nitrogen

3. Which of the following is main nutrient in DAP? Phosphorous

4. Which of the following is main nutrient in MOP? Potash

5. Which is the best fertilizer for applying nitrogen in the soil? UREA

6. Which is the best fertilizer for adding potash in the soil? MOP

7. When is zinc recommended to be applied during cotton culti-
vation for irrigated cotton?

At the time of sowing

8. When should Urea be applied in the soil for irrigated cotton? At time of sowing, and 1, 2, and 3 months after sowing

9. When should Urea be applied in the soil for un-irrigated cot-
ton?

At the time of sowing and one month after sowing

10. When should DAP be applied in the soil for cotton cultivation? At the time of sowing, and one month after sowing

11. When should MoP be applied in the soil for cotton cultivation? At the time of sowing

12. What is the benefit of appling UREA to soil? More green

13. What is the benefit of applying DAP to soil? Increased height and more branches

14. What is the benefit of applying Potash to soil? More flowers
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Appendix Table 3: Survey completion rates

Control Treatment Total

Number Percent Number Percent Number Percent

Grew cotton

Did not sow cotton 45 5.7 38 4.8 83 5.2
Sowed cotton 745 94.3 754 95.2 1499 94.8
Total 790 100.0 792 100.0 1582 100.0

Basal

Completed basal survey 707 89.3 729 91.9 1436 90.6
Attrited 85 10.7 64 8.1 149 9.4
Total 792 100.0 793 100.0 1585 100.0

Midline

Completed midline survey 773 97.6 760 95.8 1533 96.7
Attrited 19 2.4 33 4.2 52 3.3
Total 792 100.0 793 100.0 1585 100.0

Endline

Completed endline survey 736 92.9 729 91.9 1465 92.4
Attrited 56 7.1 64 8.1 120 7.6
Total 792 100.0 793 100.0 1585 100.0

Missing plot map

Plot mapped 702 88.6 687 86.6 1389 87.6
Plot not mapped 90 11.4 106 13.4 196 12.4
Total 792 100.0 793 100.0 1585 100.0

All surveys and mapping complete

Did not complete 1+ surveys 168 21.2 175 22.1 343 21.6
Completed all surveys 624 78.8 618 77.9 1242 78.4
Total 792 100.0 793 100.0 1585 100.0

Appendix Table 3 presents the completion rate of each survey and the plot mapping exercise. We determined that a farmer completed a
given survey if they grew cotton, the surveyor was able to conduct the survey, and the farmer consented to be surveyed. In two instances,
farmers attempted to grow cotton but the crops failed extremely early in the season. We treated these two observations as if the farmers
did not grow cotton since they did not apply any inputs.
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Appendix Table 4: Attrition

(1) (2) (3) (4) (5)

Basal Midline Endline Farmer-reported
yield

Satellite
data

Treatment -0.0441 -0.0154 -0.0562 -0.0721 -0.00108
(0.0960) (0.0612) (0.0880) (0.127) (0.109)

Age (baseline) -0.00151 -0.000234 -0.000528 -0.000344 -0.000683
(0.00109) (0.000515) (0.000907) (0.00128) (0.00109)

Literate -0.0454 -0.0130 -0.0409 -0.0672⇤ -0.0148
(0.0339) (0.0195) (0.0309) (0.0406) (0.0336)

Total cotton land (2017) -0.00113 0.000971 0.00738 0.00691 0.0139⇤⇤⇤

(0.00329) (0.00233) (0.00465) (0.00501) (0.00517)

Sampled plot size (2017) 0.0115 0.00429 -0.00655 -0.0201⇤ -0.00407
(0.00943) (0.00565) (0.00877) (0.0104) (0.0103)

Irrigation 0.0206 -0.0303 0.0126 -0.0633 0.0643
(0.0370) (0.0263) (0.0317) (0.0515) (0.0403)

Strong house 0.0178 -0.00970 -0.00299 -0.0263 -0.0314
(0.0233) (0.0129) (0.0179) (0.0271) (0.0226)

Own plough -0.0522⇤⇤ -0.00812 -0.0252 -0.0366 -0.0296
(0.0239) (0.0126) (0.0187) (0.0276) (0.0230)

Crop insurance 0.0233 0.00474 0.00512 0.00601 0.00284
(0.0224) (0.0109) (0.0178) (0.0251) (0.0225)

Children -0.0168 -0.00120 -0.00785 -0.00556 -0.0141⇤
(0.0103) (0.00370) (0.00579) (0.00935) (0.00758)

> median education -0.0106 -0.00372 0.00571 0.0308 0.0000631
(0.0249) (0.0105) (0.0191) (0.0276) (0.0250)

Soil tested prior to study -0.00964 0.00143 -0.0162 -0.0305 -0.00812
(0.0302) (0.0147) (0.0261) (0.0344) (0.0342)

UREA last season (kg/ha) 0.0000761⇤⇤⇤ -7.38e-08 -0.0000157⇤⇤ -0.0000438⇤ -0.0000265⇤⇤⇤
(0.0000110) (0.00000746) (0.00000791) (0.0000234) (0.0000100)

DAP last season (kg/ha) -0.0000225 0.0000141 -0.0000130 -0.0000582⇤ -0.0000283
(0.0000257) (0.0000222) (0.0000223) (0.0000330) (0.0000298)

MOP last season (kg/ha) -0.000118 -0.0000455 -0.000369 -0.000394 -0.000530
(0.000461) (0.0000699) (0.000225) (0.000419) (0.000324)

Zinc last season (kg/ha) -0.00214⇤⇤⇤ -0.0000666 0.000151 -0.000666 0.00135
(0.000828) (0.000358) (0.000748) (0.00141) (0.00138)

Observations 1,585 1,585 1,585 1,585 1,585
Adjusted R2 0.013 0.011 0.018 0.009 0.048
Control attrition rate 0.107 0.024 0.071 0.148 0.114
p-val of interactions 0.058 0.414 0.533 0.723 0.686
Robust standard errors in parentheses. ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01

Appendix Table 4 reports the results of tests for differential attrition. Each regression includes interactions between treatment and each of the other independent variables
which are omitted for space. We present the results of an F-test evaluating the joint significance of the interaction terms. A survey is defined as complete if the farmer
consented to be interviewed and sowed cotton. Education data was missing for 175 observations. Number of children is missing for 25 observations. Crop insurance is
missing for 20 observations. UREA and DAP usage last season are missing for 3 observations, DAP and MOP usage last season are missing for two observations, and
sampled plot size is missing for one observation. Missing values of these variables were imputed with the median value of each variable. All regressions include block
fixed effects.
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Appendix Table 5: Listening rates of treatment calls
Administrative data

Share of relevant farmers
that heard � 1 call Number of relevant farmers

Basal: irrigated (UREA, MOP, and DAP) 0.883 529
Early season: Potash (irrigated) 0.866 529
Dose 2: irrigated (UREA, MOP, and DAP) 0.820 529
Dose 3: irrigated (UREA, MOP, and DAP) 0.788 529
Dose 4: irrigated (UREA, MOP, and DAP) 0.745 529
Early season: Potash (irrigated) 0.866 529
Mid-season: Potash (irrigated) 0.713 529
Early season: Zinc (irrigated) 0.758 529
Mid-season: Zinc (irrigated) 0.437 529
Basal: unirrigated (UREA) 0.760 225
Dose 2: unirrigated (UREA) 0.729 225

Appendix Table 5 reports the share and number of relevant farmers in the treatment group that heard at least 1 customized fertilizer
recommendation of the indicated type. A relevant farmer means that they sowed cotton and have an irrigated plot if the advice is for
irrigated plots or an unirrigated plot if the recommendation is for unirrigated plots. Customized calls were only sent to farmers in the
treatment group. All treatment farmers received the same calls. If the call duration exceeded the point where a recommendation was
given, then heard recommendation was assigned a value of 1. The last two rows have a smaller sample size because the majority of
farmers reported growing irrigated cotton.
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Appendix Table 6: Fertilizer usage by season, dose
Baseline, basal, and midline surveys

2017 Season 2018 Season

Rec.
dose

1(applied),
control

1(applied),
treatment

Dose
|(Applied= 1)

Control

Dose
|(Applied= 1)

Treatment

Rec.
dose

1(applied),
control

1(applied),
treatment

Dose
|(Applied= 1)

Control

Dose
|(Applied= 1)

Treatment

UREA: Basal dose unirrigated 97.38 0.93⇤ 0.97⇤ 74.27⇤ 93.38⇤ 94.43 0.03 0.08 46.65 63.61
UREA: Basal dose irrigated 131.96 0.99⇤ 0.99⇤ 124.29⇤ 114.06⇤ 134.00 0.08 0.21 108.88 102.69
UREA: Dose 2 unirrigated 98.22 0.79⇤ 0.83⇤ 75.45⇤ 70.86⇤ 94.97 0.61 0.65 97.20 92.63
UREA: Dose 2 irrigated 131.74 0.96⇤ 0.95⇤ 129.20⇤ 139.32⇤ 132.29 0.90 0.94 91.97 92.80
UREA: Dose 3 unirrigated 0.00 0.28⇤ 0.33⇤ 64.00⇤ 72.87⇤ 0.00 0.33 0.42 93.13 97.72
UREA: Dose 3 irrigated 142.23 0.63⇤ 0.63⇤ 117.01⇤ 129.68⇤ 142.43 0.87 0.93 100.76 105.09
UREA: Dose 4 unirrigated 0.00 0.05⇤ 0.01⇤ 69.18⇤ 67.98⇤ 0.00 0.07 0.13 81.93 111.41
UREA: Dose 4 irrigated 143.49 0.21⇤ 0.20⇤ 119.41⇤ 111.53⇤ 143.10 0.80 0.89 105.87 114.76
UREA: Total unirrigated 197.92 0.93⇤ 0.97⇤ 155.96⇤ 150.03⇤ 191.51 0.66 0.75 135.33 138.98
UREA: Total irrigated 546.42 0.99⇤ 0.99⇤ 336.48⇤ 322.79⇤ 554.32 0.85 0.88 249.77 268.21

DAP: Basal dose unirrigated 0.00 0.92⇤ 0.99⇤ 78.47⇤ 78.88⇤ 0.00 0.66 0.72 116.09 100.56
DAP: Basal dose irrigated 57.18 0.91⇤ 0.89⇤ 136.00⇤ 127.03⇤ 57.99 0.69 0.74 128.94 114.92
DAP: Dose 2 unirrigated 0.00 0.20⇤ 0.12⇤ 64.86⇤ 52.42⇤ 0.00 0.22 0.31 93.15 76.05
DAP: Dose 2 irrigated 56.28 0.44⇤ 0.43⇤ 191.81⇤ 232.67⇤ 55.47 0.53 0.59 102.59 98.83
DAP: Total unirrigated 0.00 0.92⇤ 0.99⇤ 92.73⇤ 85.60⇤ 0.00 0.80 0.88 90.53 111.39
DAP: Total irrigated 111.11 0.91⇤ 0.89⇤ 199.98⇤ 187.00⇤ 112.97 0.80 0.81 136.72 132.33

MOP: Basal dose unirrigated 0.00 0.00⇤ 0.01⇤ ⇤ 67.83⇤ 0.00 0.03 0.02 25.48 83.46
MOP: Basal dose irrigated 209.60 0.08⇤ 0.08⇤ 65.69⇤ 72.47⇤ 202.89 0.02 0.14 97.48 89.77
MOP: Total unirrigated 0.00 0.00⇤ 0.01⇤ ⇤ 67.83⇤ 0.00 0.03 0.07 3.09 0.00
MOP: Total irrigated 209.60 0.08⇤ 0.08⇤ 83.18⇤ 80.03⇤ 202.89 0.08 0.25 59.19 91.60

Zinc: Basal dose unirrigated 0.00 0.00⇤ 0.04⇤ ⇤ 16.41⇤ 0.00 0.00 0.00
Zinc: Basal dose irrigated 18.97 0.07⇤ 0.08⇤ 23.71⇤ 270.35⇤ 19.60 0.01 0.04 12.79 24.09
Zinc: Total unirrigated 0.00 0.00⇤ 0.04⇤ ⇤ 19.17⇤ 0.00 0.01 0.04 11.30 27.13
Zinc: Total irrigated 18.97 0.07⇤ 0.08⇤ 25.99⇤ 32.13⇤ 19.54 0.06 0.11 31.27 22.66
⇤ denotes that the value is estimated and differs from the 2018 construction.
This table reports reports average recommended fertilizer amounts by dose and average actual application by season and treatment status. All recommendations were for the 2018 season, but column (2) differs from column (7)
due to differences in irrigation status and extensive margin application decisions. Columns (3) - (4) and (8) - (11) report the share of farmers that reported applying the fertilizer at the dose. Columns (2) and (7) report the average
recommended dosage, based on 2018 soil testing data, across farmers that applied any fertilizer. Columns (5) - (6) and (10) - (11) report the average amount applied among those that applied the fertilizer type. In 2018, we
collected whether the first dose was applied at sowing (basal application) or later in the season. In 2017, the first dose is treated as the basal dose which inflates application, and the 2018 cotton sowing area is used in calculations.
Amount applied by dose is only reported for recommended doses, so total application may exceed the row sum.
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Appendix Table 7: Treatment effect on revenue
Midline and endline survey data

(1) (2) (3) (4) (5) (6)

Sold (kg) Stored (kg) Sales Revenue (Rs) Expected Total
Revenue (Rs)

Av. Price
(Rs/kg)

Revenue minus
fertilizer costs (Rs)

Treatment -6.403 -103.5⇤ -91.16⇤⇤ -89.02⇤⇤ -0.118 8918.8
(169.4) (61.38) (44.50) (44.65) (0.248) (9408.7)

Block FE Yes Yes Yes Yes Yes Yes
Observations 1336 1342 1245 1341 1239 1306
R2 0.194 0.008 0.152 0.142 0.060 0.005
Control mean of dependent vari-
able

2470.4 336.1 1678.3 1710.8 2.320 -17000

Robust standard errors in parentheses. ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01

Appendix Table 7 reports treatment effect estimates on the amount of cotton sold (column 1), the amount of cotton stored (column 2), sales revenue at the time of the
survey (column 3), expected total revenue including stored cotton (column 4), the average price per kg of cotton already sold (column 5), and expected total revenue net of
fertilizer costs (column 6). Expected total revenue was calculated from estimates of revenue from existing sales and planned sales of stored cotton. The average price was
calculated by normalizing sales revenue by the amount of cotton sold. Revenue net of fertilizer costs was calculated from expected total revenue and fertilizer expenditure
data. Fertilizer expenditure data is from the midline survey, resulting in a smaller sample. All other parameters were directly measured in surveys. All regressions include
block fixed effects and all outcomes are winsorized at the 99th percentile.
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Appendix Table 8: Satellite data availability
GPS and Sentinel-2 data

Control Treatment Total

Number Percent Number Percent Number Percent

Plot mapping
Not mapped 85 11.3 105 13.8 190 12.5
Mapped 670 88.7 656 86.2 1,326 87.5

Sentinel-2: 2016
No data 2 0.3 1 0.2 3 0.2
Data 668 99.7 655 99.8 1,323 99.8

Sentinel-2: 2017
No data 2 0.3 1 0.2 3 0.2
Data 668 99.7 655 99.8 1,323 99.8

Sentinel-2: 2018
Data 670 100.0 656 100.0 1,326 100.0

Sentinel-2: no missing data
Missing data 2 0.3 1 0.2 3 0.2
No missing data 668 99.7 655 99.8 1,323 99.8
Appendix Table 8 reports the availability of cloud-free Sentinel-2 satellite imagery by treatment status. Data is non-missing
for a plot in a year if at least one cloud free image was available. There is no data available for 3 plots in 2016 and 2017
because they fall outside of the Sentinel-2 swath that images the majority of the sample.
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Appendix Table 9: Vegetation indices

Index Equation Equation in
Sentinel-2 bands Source

Normalized Difference
Vegetation Index (NDVI)

NIR�Red
NIR+Red

B8�B4
B8 +B4

Haas et al. (1974)

Green Chlorophyll Vegetation
Index (GCVI)

Å
NIR

GREEN

ã
� 1

Å
B8
B3

ã
� 1 Gitelson et al. (2003)

Red-edge NDVI (reNDVI)
NIR�RE
NIR+RE

B8�B5
B8 +B5

Viña and Gitelson (2005)

MERIS Terrestrial Chlorophyll
Index (MTCI)

NIR�RE
RE �Red

B8�B5
B5�B4

Dash and Curran (2004)

Leaf Area Index (LAI) Neural net Weiss and Baret (2016) Weiss and Baret (1999)

Sentinel-2 bands 3, 4, and 8 have a 10 meter by 10 meter resolution, but band 5 has a 20 meter by 20 meter resolution. Hence,
we resampled band 5 using a bilinear algorithm before deriving the Red-edge NDVI and MTCI. We resampled all Sentinel-2
bands to 10 meters before calculating LAI.
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Appendix Table 10: Satellite-measured vs farmer-reported yields
Endline survey, GPS data, and Sentinel-2 imagery

(1) (2) (3) (4) (5)
NDVI GCVI reNDVI MTCI LAI

Panel A: Plots above the median size

Yield (metric tons/hectare) 0.103⇤⇤⇤ 0.573⇤⇤⇤ 0.073⇤⇤⇤ 0.334⇤⇤⇤ 0.230⇤⇤⇤

(0.006) (0.045) (0.004) (0.026) (0.018)

Constant 0.356⇤⇤⇤ 1.779⇤⇤⇤ 0.221⇤⇤⇤ 2.530⇤⇤⇤ 0.559⇤⇤⇤

(0.008) (0.048) (0.005) (0.033) (0.019)

Observations 647 647 647 647 647
Adjusted R2 0.321 0.252 0.332 0.221 0.244

Panel B: Plots below the median size

Yield (metric tons/hectare) 0.096⇤⇤⇤ 0.664⇤⇤⇤ 0.072⇤⇤⇤ 0.390⇤⇤⇤ 0.251⇤⇤⇤

(0.008) (0.059) (0.005) (0.032) (0.023)

Constant 0.416⇤⇤⇤ 2.088⇤⇤⇤ 0.259⇤⇤⇤ 2.665⇤⇤⇤ 0.698⇤⇤⇤

(0.009) (0.059) (0.006) (0.038) (0.023)

Observations 644 644 644 644 644
Adjusted R2 0.250 0.231 0.270 0.204 0.214
p-value: R2 Panel A  R2 Panel B 0.062 0.330 0.085 0.344 0.261
Robust standard errors in parentheses. ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01

Appendix Table 10 reports the results of regressions of satellite vegetation indices (VIs), calculated using Sentinel-2 L2A multispectral satellite imagery, on farmer
reported productivity. We calculated the median VI value observed in each plot for 5 Sentinel-2 images from 2018 and then took the maximum value across the 5 satellite
passes for each plot and each VI. We removed outlying observations in farmer-reported data by winsoring strictly positive values at the 2nd and 98th percentiles. We report
the probability that the increase in adjusted R2 from panel (a) to panel (b) is due to random chance in each column. These p-values were obtained using randomization
inference.
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Appendix Table 11: The effect of irrigation on yields (kilograms/hectare)
Survey data, GPS data, and Sentinel-2 imagery

(1) (2) (3)
Survey yield
Survey area

Survey yield
GPS area Satellite yield

Irrigation 700.830⇤⇤⇤ 818.289⇤⇤⇤ 122.891⇤⇤⇤

(56.431) (71.121) (32.876)

2018 -862.495⇤⇤⇤ -919.476⇤⇤⇤ -1304.268⇤⇤⇤
(53.904) (63.794) (32.789)

Irrigation x 2018 11.374 -47.413 379.344⇤⇤⇤
(62.501) (73.845) (36.388)

Constant 1,117.736⇤⇤⇤ 1,186.079⇤⇤⇤ 1,813.094⇤⇤⇤

(49.572) (61.991) (30.871)

Observations 2,522 2,522 2,522
Clusters 1,261 1,261 1,261
Adjusted R2 0.249 0.221 0.583
Clustered standard errors in parentheses. ⇤ p < 0.10, ⇤⇤ p < 0.05, ⇤⇤⇤ p < 0.01

Appendix Table 11 compares regressions of farmer-reported yields and satellite-measured yields on year dummies, irrigation status, and an interaction between irrigation
status and year. In column (1), the dependent variable is farmer-reported total cotton yield, in kilograms, divided by cultivation area, in hectares. In columns (2) and (3),
the dependent variable is satellite-measured productivity. We calculated satellite-measured yield by calculating, from Sentinel-2 imagery, the median Red-edge NDVI
(reNDVI) pixel value observed in each plot for each satellite pass. We then linearly transformed the reNDVI values to productivity using a linear regression on farmer-
reported yield divided by GPS-measured plot size. Column (2) uses Sentinel-2 observations from October 28, 2017 and October 28, 2018 only. Column (3) includes all
2017 and 2018 Sentinel-2 passes that we analyze in this paper. Irrigation is defined as 1 if the farmer reported irrigating their plot using underground water, a nearby
water source/dam, or a canal during the baseline survey. In 491 instances, farmers indicated that they had an irrigation system fed by rainfall. We coded irrigation to
0 in these cases since the variable is intended to capture whether the respondent has an irrigation system independent of rainfall. We removed outlying observations in
farmer-reported yield data by winsoring strictly positive values at the 2nd and 98th percentiles. The sample is restricted to observations for which none of the dependent
variables are missing.
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8 Technical Appendix

8.1 Satellite yield data and methodology

We construct satellite yield estimates using GPS plot boundary data collected concurrently with the endline survey
and multispectral satellite imagery from the European Space Agency’s Sentinel-2 mission. In omitted analysis, we
also examined PlanetScope imagery offered by the private company Planet Labs. However, PlanetScope did not offer
improved yield measurements and has high access barriers, so we excluded the data source from our analysis. Several
other recent studies, such as Lobell et al. (2019), have similarly found that satellite constellations such as PlanetScope
– which have superior spatial resolution but inferior spectral resolution compared to Sentinel-2 – do not improve yield
estimates.

Surveyors collected GPS boundary data by walking the boundaries of plots with Garmin eTrex 30x GPS devices.
The research team manually verified the accuracy of each plot boundary using high-resolution satellite imagery. The
mapping exercise was completed at the same time as the endline survey, but a separate survey team conducted the plot
mapping. The plot mapping and survey teams often met separately with farmers, resulting in a different set of attriters
for the endline survey and mapping exercise.

Surveyors were able to collect boundary data for 1,389 of the 1,585 plots visited during the baseline survey. We
excluded 63 plots on which cotton was not cultivated from the sample, resulting in 1,326 plot maps of cotton plots. In
23% of the sample, farmers only grew cotton on part of their plot. In these instances, surveyors mapped the plot twice:
they first walked the boundary of the entire plot, then they mapped only the portion where cotton was cultivated. We
use the cotton cultivation area in place of full plot boundary data in these cases and refer to this area as “plot size”
and “plot area.” Results are similar if we use the full plot area, although the fit between farmer-reported and satellite-
measured yields decreases slightly. The average cotton cultivation area was 1.57 hectares, the standard deviation in
cotton cultivation area was 1.12 hectares, and 9% of farmers in the sample sowed cotton on an area of 0.5 hectares or
smaller.

We use satellite data from the Sentinel-2 constellation operated by the European Space Agency’s Copernicus
program. The constellation consists of two identical satellites that operate in an identical orbit, but are placed 180
degrees apart. The satellite constellation collects imagery of most of the planet at least once every 5 days. The spatial
resolution of Sentinel-2 images varies for different spectral wavelengths. We use red, green, blue, and near-infrared
bands with a spatial resolution of 10 meters by 10 meters (meaning that each pixel in an image corresponds to a 10
meter by 10 meter area on Earth). We also examine red-edge infrared and short-wave infrared bands that have a 20
meter by 20 meter spatial resolution.22 Sentinel-2 imagery is freely accessible through the Copernicus Open Access
Hub, the Google Earth Engine, and a variety of other sources.

We searched for images with less than 20% cloud cover between August 15th and November 15th in 2016, 2017,
and 2018. We chose this range of time because it falls between the early flowering period and the start of harvesting in
the study sample. Zhao et al. (2007) find that multispectral imagery obtained during this portion of the phonological
cycle can accurately predict cotton productivity. Cloud cover near 20% is very high, and may produce invalid results
even in cloud-free areas because factors such as cloud shadows interfere with image quality. However, cloud cover
is calculated per tile – the 100x100km images that Sentinel-2 data is distributed in – by the Copernicus Open Access
Hub from which we downloaded the data, not across the entire AOI. Part of the study sample is contained in a tile that
also includes a coastal region with persistent cloud cover. Hence, setting stricter parameters for cloud cover caused
data from this portion of the sample to get dropped, even though there were frequently no clouds over the sample plots
in this portion of the data.

To solve this problem, we identified dates for which all Sentinel-2 tiles intersecting the sample region had less
than 20% cloud cover, and then downloaded the imagery for these dates. We then manually examined the images, and
selected dates for which cloud cover was very low. We also excluded several dates that only covered a portion of the
sample, particularly in 2017, due to the high computational costs of processing the imagery. We do not have objective
measurements of the cloud cover over the sample plots on the selected dates, but we estimate that clouds cover less than
5% of the area of the sample plots for each selected date. This methodology is imperfect since it depends partially on
subjective judgment. However, we note that the Google Earth Engine scripts that we include in the GitHub repository
accompanying this study (https://github.com/gkilleen33/rs-economics) calculate the rate of cloud
cover over the area of interest that is uploaded and therefore avoid this problem.

22Sentinel-2 also has 60m resolution bands for detecting aerosol, water vapor, and cirrus that are used in atmospheric correction and cloud
masking algorithms but not in analysis.
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Sentinel-2 images from 2016-10-28, 2017-10-08, 2017-10-28, 2017-11-02, 2017-11-07, 2018-09-28, 2018-10-
03, 2018-10-18, 2018-10-23, 2018-10-28, 2018-11-04, and 2018-11-07 were selected using this procedure. Later
analysis indicated that imagery obtained prior to October 15th was substantially less predictive of yield. Hence, we
dropped the data from 2017-10-08, 2018-09-28, and 2018-10-03 and were left with one image from 2016, three images
from 2017, and five images from 2018. None of the images covers the entire sample. A small number of plots fall on
the border of a Sentinel-2 swath, meaning that they are imaged several days apart. As a result, the image from 2018-
11-04 only covers about 45% of the sample, whereas each of the other images cover more than 99% of the sample.
Fewer than 10 plots fall outside of the second Sentinel-2 swath, with the exact number varying across satellite passes.
Appendix Table 8 reports the number of treatment and control plots that were mapped, and the number of plots that
we were able to obtain cloud-free Sentinel-2 data for in each year. At least one cloud free image was available for each
mapped cotton plot in 2018, and at least one cloud free image was available in 2016, 2017, and 2018 for all but three
mapped cotton plots.

We downloaded data from the Copernicus program in the Level-1C (L1C) format which is a top-of-atmosphere
(TOA) reflectance product. We processed the imagery using version 2.8 of a third party plugin called “Sen2Cor” that
generates a bottom-of-atmosphere (BOA) corrected surface reflectance (L2A) product.23 One of the primary purposes
of the program is to remove the effects of the atmosphere on reflectance values, meaning images produced are more
accurate representations of the Earth’s surface. The program also performs terrain corrections, cirrus corrections,
reduces heterogeneity between different tiles, and generates a scene classification (Mueller-Wilm, 2019). We masked
out pixels classified as saturated or defective, cloud shadows, a medium cloud probability, or a high cloud probability.
In other words, these pixels were coded to missing and excluded from calculations. We did not use the Google Earth
Engine for our analysis because the platform did not offer Sentinel-2 L2A imagery covering the sample region and
dates of imagery when we conducted the analysis, and we found that the cloud classification produced by “Sen2Cor”
was generally accurate.

Using the processed imagery, we constructed 6 vegetation indices (VIs) to measure agricultural productivity.
Specifically, we calculated the Normalized Difference Vegetation Index (NDVI), Green Chlorophyll Vegetation Index
(GCVI), Red-edge NDVI (reNDVI), MERIS Terrestrial Chlorophyll Index (MTCI), and Leaf Area Index (LAI) for
each date. NDVI, GCVI, reNDVI, and MTCI are simple combinations of spectral bands and exploit the fact that
chlorophyll absorbs visible red light but reflects infrared light to assess crop health. We selected these VIs based on
their effectiveness at measuring maize yields in Burke and Lobell (2017) and Lobell et al. (2020). We estimated LAI
using a tool included in the Sentinel Application Toolbox (SNAP) version 7.0.0. The software uses a neural network
to estimate LAI. Details of the algorithm are presented in Weiss and Baret (2016). We chose to consider LAI based
on the strength of the metric at predicting smallholder productivity in Lambert et al. (2018). Appendix Table 9 defines
each of the VIs that we consider and provides a citation for each index source.

Constructing the VIs results in a set of 36 single band images: one for each VI on each date. These images are
essentially large arrays where the value of a cell, a pixel in the image, represents the VI value at a point on Earth, and
the location of the cell plus metadata map each cell to a geographical location. For each plot and each image, we take
the median value of all pixels whose centroid is contained in the plot boundary polygon, excluding any pixels that we
masked out in the earlier step. This results in a data set (in this case a CSV) containing a real number for each plot,
VI, and date that can be analyzed in standard statistical software.

There are multiple approaches to convert a time-series of VI values into a yield measurement for a plot. For
instance, Lobell et al. (2020) regress yield on each of the VI values captured during a season. We adopt the approach
used in Lambert et al. (2018) and take the maximum of the VI values observed in each plot during each season. We do
so because the approach is more robust to differences in sowing time, allows us to use imagery from both Sentinel-2
swaths covering the sample, and to avoid over-fitting to farmer-reported productivity data that may be inaccurate. This
approach also minimizes attrition since only a single cloud-free image is needed per season.

We next assess the effectiveness of satellite VIs at measuring agricultural productivity in this setting by comparing
the maximum VI values from 2018 to farmer-reported productivity. For each vegetation index (VI), we estimate the
OLS regression

V Ii = ↵+ Y ieldi + ✏i

where V Ii = max{V Ii,20181018, V Ii,20181023, V Ii,20181028, V Ii,20181104, V Ii,20181107 : V Ii, d 2 R} is the

23The ESA recently started providing official L2A products processed using Sen2Cor. However, official L2A images covering our study region
and time periods are not available.
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maximum vegetation index value observed in plot i and Y ieldi is farmer-reported yield in metric tons per hectare.
Metric tons are used instead of kilograms to reduce the number of leading zeros in regression results.

8.2 Satellite yield validation

Table 6 presents the results of regressions between each of the VIs and farmer-reported productivity. We find strong
evidence supporting the accuracy of satellite yield measurements which is detailed in Section 4.1. The results of two
additional tests aimed at assessing the quality of satellite yield measurements are presented in Appendix Table 10 and
Appendix Table 11.

In Appendix Table 10, we examine the relationship between each of the VIs and farmer-reported productivity sep-
arately among small and large plots. Burke and Lobell (2017) note that the fit between VIs and farmer-reported yield
should be better on large plots than small plots if satellite yields are valid. Some sources of noise in farmer-reported
data, such as rounding, should decrease as plot size increases because the error is spread over a larger denominator.
Larger plots also contain more satellite pixels and the ratio of pixels that are fully contained in the plot to pixels that
partially overlap with areas outside of the plot is higher, so measurement error may also be decreasing in satellite yield
estimates. Hence, we would expect the R2 between the VIs and farmer-reported productivity to increase with plot size
if satellites are returning an accurate estimate of productivity.

We test this hypothesis by splitting the sample into plots greater than the median size in panel (A) and plots that
are less than or equal to the median size in panel (B). The adjusted R2 associated with each VI is higher in panel
(A) than panel (B). For instance, the adjusted R2 decreases by about 0.062 from panel (A) to panel (B) in the case
of reNDVI, which is the best performing VI. We estimate the likelihood that each of the differences is due to random
chance using randomization inference. We run 10,000 simulations in which we randomly split the sample into groups
of 647 and 644 plots, then examine what fraction of the time

[R2(Group1)�R2(Group2)] > [R2(PanelA)�R2(PanelB)]

for each VI. We report the results of this test at the bottom of Appendix Table 10. The probability that the increase in
adjusted R2 from panel (B) to panel (A) is due to random chance in the case of reNDVI is less than 0.1. Hence, we
find relatively strong evidence that the fit between reNDVI and farmer-reported productivity increases with plot size,
supporting the validity of satellite measurements of small-holder cotton productivity in this sample.

Appendix Table 11 regresses farmer-reported yield and satellite-measured yield on baseline irrigation, year, and
an interaction between irrigation and year. Figure 5 demonstrates that rainfall was well below average during the 2018
growing season, but typical during the 2017 season. Hence, we expect that the productivity difference between plots
with irrigation and plots without irrigation should be larger in 2018 than 2017. The interaction between irrigation and
year is not significant in the case of farmer-reported productivity in Columns (1) and (2). However, the interaction
between treatment and year is positive and statistically significant using satellite yield measurements in Column (3).
We measure yield by linearly fitting reNDVI values to farmer-reported productivity. We interpret these results as
suggestive evidence that satellite data produces a more precise estimate of true productivity than survey data.

Overall, we find strong evidence that satellite imagery produces accurate measurements of small-holder cotton
productivity in Gujarat, India. Red-edge NDVI is the vegetation index most strongly correlated with farmer-reported
productivity in this sample. As a result, this index is the basis of satellite yield measurements presented elsewhere in
this paper.

As discussed in detail in the main paper, we construct satellite yield estimates from the raw reNDVI values using
two approaches. First, we proceed by fitting an OLS regression of farmer-reported productivity on reNDVI and then
calculating a linear prediction. Second, we use two-stage least squared to instrument for reNDVI using sow date and
total rainfall from June-October, controlling for block fixed-effects. Farmer-reported productivity (in kg/ha) is defined
as farmer-reported total yield divided by GPS-measured plot size in these regressions. We use GPS measured plot size
since previous research has shown that farmer-reported plot size can introduce bias into productivity measurements.

8.3 Power calculations

Table 9 presents a comparison of power calculations conducted using farmer-reported yield data to power calcula-
tions using satellite-measured yields based on the data from this study. This section details the methodology used to
construct the power calculations.
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Each column presents the estimated total sample size needed to detect a 5% change in yields with 95% confi-
dence and 90% power. The power calculations were also constructed using a standard non-parametric bootstrap. We
conducted the bootstrap in Python to allow for better parallelization. For all estimates other than those involving Lee
Bounds, our approach is:

1. Create a Pandas dataframe containing all control observations that are not missing farmer-reported plot area
data, farmer-reported yield data from 2017 or 2018, or satellite vegetation index measurements for either year.

2. For each sample size N on a grid with a step size of 100:

• Construct 1,000 bootstrapped samples from the dataframe of size N by sampling with replacement.
• Assign a randomized treatment variable, Ti, stratifying by block.
• For each outcome measurement yi, impose the alternative hypothesis by calculating y0

i
= yi+ .05⇤Ti ⇤yi.

• Estimate the regression of interest using y0
i

on the bootstrapped sample. The test rejects if �̂ > 0 and the
p-value is below .05.

• Calculate power as the share of the time the test rejects.

3. Find the minimum N over the grid for which power is at least 0.9.

4. Finally, to account for attrition we estimate that the required sample size is N/a where a is 1 minus the attrition
rate for the data source. This is the value reported in Table 9.

Note that since we account for attrition in the last step, the estimated sample sizes need not be in multiples of 100
even though the grid is.

To estimate the required sample size giving Lee bounds, we follow a slightly different approach:

1. Include all observations in a Pandas dataframe, including those that attrited.

2. For each sample size N on a grid with a step size of 100:

• Construct 1,000 bootstrapped samples from the dataframe of size N by sampling with replacement, strati-
fied by treatment assignment and block.

• For each bootstrapped sample, drop observations missing outcome data.
• For each outcome measurement yi, impose the alternative hypothesis by calculating y0

i
= yi+ .05⇤Ti ⇤yi.

• Using the actual treatment assignment, Ti, trim the data in order to obtain the lower Lee (2009) bound.
• Estimate the regression of interest using y0

i
on the bootstrapped sample. The test rejects if �̂ > 0 and the

p-value is below .05.
• Calculate power as the share of the time the test rejects.

3. Find the minimum N over the grid for which power is at least 0.9.

4. This is the value reported in Table 9.

This method differs slightly in that we use actual treatment data, rather than limiting analysis to the control group.
We believe this is unlikely to affect results since we find no evidence of a treatment effect on yields. The advantage is
that we are able to capture the true distribution of differential attrition in the data.

For robustness, we also performed power calculations analytically (which are not reported in this version of the
paper), and we found similar results.

The first column uses farmer-reported yield measurements normalized by farmer-reported plot size. The second
column uses satellite data calibrated with OLS. The third and fourth columns use satellite data calibrated via two-stage
least squares. In columns 2 and 3, we first calculate yield predictions and then perform the bootstraps. In column 4,
we calibrate the yield predictions after drawing each bootstrapped sample.

The first row reports estimated sample sizes needed to detect a 5% effect size 90% of the time including all
available lagged outcomes as controls. The second row controls only for one year of past satellite data, rather than
two, which we only report for column 4 for computational reasons. Row 3 reports sample sizes without controlling
for any lagged outcomes, which we again only report for one satellite outcome for computational reasons. Finally, the
fourth row reports sample sizes needed to detect an effect size after taking the lower Lee (2009) bound, which is only
for farmer-reported data since differential attrition is not possible in the satellite data.
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8.4 Instructions for calculating satellite yield estimates

This section provides step-by-step instructions for calculating satellite yield measurements. These instructions use
Sentinel-2 L2A data on the Google Earth Engine. This data is available globally beginning in December 2018.
Sentinel-2 L1C data is available on the Google Earth Engine for earlier dates, and L2A data can be generated us-
ing different tools. However, this documentation does not cover that use case.

Excluding the time taken to collect plot boundary data, these instructions should take less than two hours to
complete.

1. Collect plot boundary data for each plot. The boundary data should be in a format such as an ESRI Shapefile
or GeoJSON, where each plot is a separate polygon. In addition, each plot should have a unique ID associated
with it. This can be added using free software such as QGIS by editing the attribute table if a unique ID is not
already present. This will later be used to merge the vegetation index values with other data sources.

Plot boundary data is most accurate if it is collected by having surveyors walk plot boundaries with GPS devices.
Garmin eTrex 30x units were used in this study. Smart phones or tablets may be adequate in some conditions,
although they often have worse signal reception and may have lower accuracy.

If plots cannot be mapped but a single GPS point is available, one can trace the plot boundary using high-
resolution satellite imagery and GIS software such as ArcGIS or QGIS.

2. Register for the Google Earth Engine at https://code.earthengine.google.com/. Registration
will be tied to your Google account. If an academic email address is used, the service is free.

3. Install Python 3 and the Google Earth Engine API. The Conda package manager is suggested for creating
the environment. Instructions are available at https://developers.google.com/earth-engine/
python_install-conda.

4. Upload the plot boundary data to the Google Earth Engine through the Earth Engine console at https:
//code.earthengine.google.com/. Instructions for uploading the plot boundary data are available at
https://developers.google.com/earth-engine/importing. Make sure that the plot bound-
ary data has an attribute feature that uniquely identifies each polygon. The script will produce panel data in long
format, and so an ID variable is essential to analyze the outputted data.

5. Create an ESRI Shapefile or similar file that defines the Area of Interest (AOI) for your project. The AOI should
consist of 1 or more polygons that contain all of the plots in your sample. Instructions for creating such a file
in QGIS are available at https://docs.qgis.org/2.8/en/docs/training_manual/create_
vector_data/create_new_vector.html.

6. Upload the AOI data to the Google Earth Engine following the same steps used for the plot boundary data.

7. Create a folder on your Google Drive account that will store the outputted vegetation index values for each plot.
This document will be a csv.

8. Open a text document and paste in the code block included at the bottom of these instructions, beginning with
# -*- coding: utf-8 -*- and ending with task.start() followed by an empty line. Save the file with the
extension .py. If you close the text editor and wish to edit this file in the future, you may need to right click
on the document and select open with, then select a text editor or open the file through a text editor. These
instructions assume that the file is called calculate_vis.py and refer to the file using that name. However, you
may title it whatever you wish, as long as it ends with .py.

9. Nine values must be inserted into the code for it to work. All values should be inserted in the clearly labeled
section for user inputs, and no other sections should be modified.

• Plot boundary data: Insert the Google Earth Engine asset ID for the plot boundary data,
wrapped in single or double quotes, between the parentheses in the line plot_boundaries = ee.

FeatureCollection() which is line number 10. Instructions for finding the Google Earth Engine asset
ID are available at https://developers.google.com/earth-engine/asset_manager#
importing-assets-to-your-script.
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• AOI: Insert the Google Earth Engine asset ID for the AOI, wrapped in single or double quotes, between
the parentheses in line number 11, aoi = ee.FeatureCollection().

• Start date: Enter the earliest date from which images should be obtained. Images may not be downloaded
from the start date since Sentinel-2 does not image each area of the world every day and many images
have cloud cover. This is the earliest date that images will be considered. The date should be entered in
the format YYYY-MM-DD between the parentheses in line 15.

• End date: Enter the latest date for which images should be obtained in line 16.
• Maximum cloud coverage: In line 19, enter the maximum cloud coverage for which images will be

downloaded, in percentage terms (with no percent sign). The value 10 in the code max_cloud_cover

= 10 should be replaced with the value that you choose. Cloud cover is calculated across the AOI that
you upload, and images with higher cloud coverage will not be considered. The script will also mask out
clouds, meaning if a plot falls below a cloud in an image the data will be coded to missing. Values should
generally be kept as low as possible for this parameter because even moderate cloud cover can dramatically
reduce the quality of results.

• Minimum AOI coverage: This parameter specifies the minimum percent of the AOI that should be cov-
ered by satellite images obtained on a certain date for the imagery to be downloaded. Since Sentinel-2
covers different areas of the globe on different days, the satellite may only pass over a portion of the sam-
ple on a date. Users may want to exclude dates that cover only part of the sample in favor of those that
cover the full sample. Enter a number between 0 and 1 in line 22. The default value is 0.9.

• Reducer: A given plot typically contains multiple satellite pixels. This parameter determines how to
aggregate multiple pixel values into a single measurement per plot for each satellite pass. The value
should be entered in line 27 and be contained in single or double quotes. The options are mean, median,
min, max, mode, and sd, where sd is standard deviation. This paper uses median to reduce the influence
of outliers, but we also considered mean. If you would like to test multiple options, you may run multiple
versions of the code.

• Output folder: Enter the name of the folder that you created on Google Drive to store the outputs in line
31. The value must be contained within single or double quotes.

• Output file: Enter the name you would like the output file to have. Do not include a file extension. The
value should be inserted in line 32 and must be contained in single or double quotes.

10. Save calculate_vis.py with the updated parameters.

11. Open a command line and change the working directory to the folder containing calculate_vis.py.

12. Make sure that you have the Python environment containing the Google Earth Engine API activated. If
you are confused by this step, refer to this documentation: https://developers.google.com/
earth-engine/python_install-conda

13. In the command line, enter python calculate_vis.py and hit enter.

14. The Google Earth Engine will now calculate the vegetation index values for several different VIs for each
satellite image meeting the coverage, cloud cover, and date parameters. The output will be panel data in a CSV
format saved to the Google Drive folder selected once the process is complete. This can be imported into any
statistical software.

15. The process of translating VI values to yield estimates varies. In this paper, we first take the maximum Red-
edge Normalized Difference Vegetation Index value for each plot across a season, then linearly fit this value to
farmer-reported cotton yields. As discussed in the paper, we recommend using a 2SLS using an instrument such
as rainfall to calibrate this relationship. We suggest looking at several of the methods used in papers that we
cite, and then selecting the method that seems the most appropriate and works the best in your sample.

1 # -*- coding: utf-8 -*-
2

3 import ee
4
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5 ee.Initialize()
6

7 ###############################################################
8 # ENTER USER INPUTS HERE
9 ###############################################################

10 plot_boundaries = ee.FeatureCollection() # Upload plot boundary data (e.g. using the Google Earth
Engine console) and insert the asset ID here, in single or double quotes

11 aoi = ee.FeatureCollection() # Upload AOI polygon (e.g. using the Google Earth Engine console)
and insert the asset ID here, in single or double quotes

12 # The AOI can contain multiple polygons, but should be relatively simple. A bounding box or
convex hull around all plot boundaries is appropriate

13

14 # Start and end dates for image search (YYYY-MM-DD)
15 begin = ee.Date() # E.g. ’2019-08-01’
16 end = ee.Date() # E.g. ’2019-12-15’
17

18 # Set max cloud cover (%)
19 max_cloud_cover = 10 # This is a default value. This value should be kept relatively small since

high cloud cover can bias results.
20

21 # Minimum AOI coverage
22 min_aoi_coverage = 0.9 # This is the minimum area coverage of low cloud satellite tiles (<

max_cloud_cover) calculated against AOI
23 # The percent of plots with data may be higher or lower since they may not be uniformly

distributed in the AOI or plots may be beneath clouds
24

25 # Reduction method
26 # One of ’mean’, ’median’, ’min’, ’max’, ’mode’, ’sd’
27 reducer = ’mean’ # Each plot has multiple pixel values in it. This specifies how a single value

should be extracted for each plot on each date.
28 # For example, if ’mean’ is selected the average pixel value within a plot is calculated and

passed to the CSV
29

30 # Export information (to Google Drive)
31 output_folder = ’EXAMPLE_FOLDER’ # Folder name to save outputs in Google drive. The folder

should be created before running the script.
32 output_file = ’EXAMPLE_FILE_NAME’ # Output file name
33

34 ##############################################################
35 # END USER INPUTS
36 ##############################################################
37

38 if reducer == ’median’:
39 ee_reducer = ee.Reducer.median()
40 elif reducer == ’mean’:
41 ee_reducer = ee.Reducer.mean()
42 elif reducer == ’min’:
43 ee_reducer = ee.Reducer.min()
44 elif reducer == ’max’:
45 ee_reducer = ee.Reducer.max()
46 elif reducer == ’sd’:
47 ee_reducer = ee.Reducer.stdDev()
48 else:
49 raise Exception(’Please select a valid reduction method.’)
50

51

52 l2a = ee.ImageCollection("COPERNICUS/S2_SR")
53

54 # Filter the Sentinel-2 data based on AOI and cloud cover
55 filtered = l2a.filterDate(begin, end).filterBounds(aoi).filter(ee.Filter.lte(’

CLOUDY_PIXEL_PERCENTAGE’, 15))
56

57 # Create a separate image collection by day
58 number_of_days = end.difference(begin, ’day’)
59 def calculateDays(day):
60 return begin.advance(day,’day’)
61

62 list_of_days = ee.List.sequence(0, number_of_days.subtract(1)).map(calculateDays)
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64 """
65 NOTE
66 Mosaicing defaults to EPSG:4326 with 1 degree by 1 degree scale by default if there are competing
67 inputs. This doesn’t appear to change the native resolution in this case, but reprojection
68 will need to occur here to standardize all band projections if the issue emerges.
69 """
70

71 def calc_footprint(image, list):
72 # Cast
73 image = ee.Image(image)
74 list = ee.List(list)
75 tile_footprint = ee.Algorithms.GeometryConstructors.Polygon(
76 ee.Geometry( image.get(’system:footprint’) ).coordinates()
77 )
78 return list.add(ee.Feature(tile_footprint))
79

80

81 def create_mosaics(date, newlist):
82 # Cast values
83 date = ee.Date(date)
84 newlist = ee.List(newlist)
85

86 # Filter collection between date and the next day
87 filtered_day = filtered.filterDate(date, date.advance(1,’day’))
88

89 # Create a variable recording the footprint of the mosaic
90 footprint_collection = ee.FeatureCollection(ee.List(filtered_day.iterate(calc_footprint, ee.

List([]))))
91 footprint = ee.Feature(footprint_collection.union(100).first())
92

93 # Generate the mosaic
94 image = ee.Image(filtered_day.mosaic()).set({’Date’: date, ’footprint’: footprint})
95

96 # Add the mosaic to a list only if the collection has images
97 return ee.List(ee.Algorithms.If(filtered_day.size(), newlist.add(image), newlist))
98

99 daily_mosaics = ee.ImageCollection(ee.List(list_of_days.iterate(create_mosaics, ee.List([]))))
100

101 # Only keep days where area coverage is at least min_aoi_coverage
102 if aoi.size().getInfo() == 1:
103 aoi_footprint = aoi.first().geometry()
104 else:
105 aoi_footprint = ee.Feature(aoi.union(100).first())
106

107 def add_coverage(image):
108 footprint = ee.Feature(image.get(’footprint’))
109 image_footprint = footprint.geometry()
110 aoi_area = aoi_footprint.area()
111 intersect = aoi_footprint.intersection(image_footprint, ee.ErrorMargin(1))
112 intersect_area = intersect.area()
113 coverage = ee.Number(intersect_area.divide(aoi_area))
114 return image.set(’AOI_COVERAGE’, coverage)
115

116 daily_mosaics_aoi = daily_mosaics.map(add_coverage)
117 final_imagery = daily_mosaics_aoi.filter(ee.Filter.gte(’AOI_COVERAGE’, min_aoi_coverage))
118

119 # Apply cloud and water mask
120 def mask_s2_image(image):
121 # Cast
122 image = ee.Image(image)
123 scl = image.select("SCL") # Scene classification map
124 # Mask out satured or defective (1), cloud shadows (3), water (6), clouds medium prop (8),

clouds high prob (9)
125 mask = scl.neq(9).And(scl.neq(8)).And(scl.neq(6)).And(scl.neq(3).And(scl.neq(1)))
126 return image.updateMask(mask)
127

128
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129 masked_final_imagery = final_imagery.map(mask_s2_image)
130

131

132 # Extract vegetation indices (VIs) and relevant bands from the masked imagery, use separate
functions for VIs that only use 10m imagery vs ones that use 20m

133 def add_vis_10m(image):
134 # NDVI
135 VIs = image.normalizedDifference([’B8’, ’B4’])
136 VIs = VIs.select("nd").rename("NDVI")
137 # GCVI
138 VIs = VIs.addBands(image.expression(
139 ’(NIR / GREEN) - 1’, {
140 ’NIR’: image.select(’B8’),
141 ’GREEN’: image.select(’B3’)
142 }).rename(’GCVI’))
143 # EVI (note, bands are scaled by 10,000 which needs to be removed to get surface reflectance

values)
144 VIs = VIs.addBands(image.expression(
145 ’2.5*((NIR - RED) / ((NIR + 6 * RED - 7.5 * BLUE) + 1))’, {
146 ’NIR’: image.select(’B8’).divide(10000),
147 ’RED’: image.select(’B4’).divide(10000),
148 ’BLUE’: image.select(’B2’).divide(10000)
149 }).rename(’EVI’))
150 # B4
151 VIs = VIs.addBands(image.select(’B4’))
152 # B8
153 VIs = VIs.addBands(image.select(’B8’))
154 return VIs.set({’Date’: image.get("Date")})
155

156 def add_vis_20m(image):
157 # Red-edge NDVI (Band 5 is 20m)
158 VIs = image.normalizedDifference([’B8’, ’B5’])
159 VIs = VIs.select("nd").rename("reNDVI")
160 # MTCI
161 VIs = VIs.addBands(image.expression(
162 ’(NIR - RE) / (RE - RED)’, {
163 ’NIR’: image.select(’B8’),
164 ’RE’: image.select(’B5’),
165 ’RED’: image.select(’B4’)
166 }).rename(’MTCI’))
167 #SeLI: Pasqualotto, N., Delegido, J., Van Wittenberghe, S., Rinaldi, M., & Moreno, J. (2019).

Multi-Crop Green LAI Estimation with a New Simple Sentinel-2 LAI Index (SeLI). Sensors (
Basel, Switzerland), 19(4), 904. doi:10.3390/s19040904

168 VIs = VIs.addBands(image.normalizedDifference([’B8A’, ’B5’]).rename(’SeLI’))
169 #LAIgreen
170 VIs = VIs.addBands(image.expression(’5.405 * ((R865 - R705) / (R865 + R705)) - 0.114’, {
171 ’R865’: image.select(’B8A’),
172 ’R705’: image.select(’B5’)
173 }).rename("LAIgreen"))
174 # B5
175 VIs = VIs.addBands(image.select(’B5’))
176 # B8A
177 VIs = VIs.addBands(image.select(’B8A’))
178 return VIs.set({’Date’: image.get("Date")})
179

180 vegetation_indices_10m = masked_final_imagery.map(add_vis_10m)
181 vegetation_indices_20m = masked_final_imagery.map(add_vis_20m)
182

183 # Calculate zonal stats for each VI/band
184 meters = 10
185 def zonalStats(image):
186 date = image.get("Date")
187 toReturn = image.reduceRegions(reducer=ee_reducer, collection=plot_boundaries, scale=meters)
188 return toReturn.set(’Date’, date)
189

190 zs_10m = vegetation_indices_10m.map(zonalStats)
191 meters = 20
192 zs_20m = vegetation_indices_20m.map(zonalStats)
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193

194

195 # Remove geometry from the zonal stats
196 def processFeature(feature):
197 return feature.setGeometry(None)
198

199 def removeGeometry(featureCollection):
200 fc = ee.FeatureCollection(featureCollection) # Cast
201 fc_date = ee.Date(fc.get(’Date’)).format(’yyyy-MM-dd’) # Get date to assign
202 fc_no_geometry = fc.map(processFeature)
203 toReturn = fc_no_geometry.map(lambda x: x.set({’Date’: fc_date}))
204 return toReturn
205

206 zs_10m_no_geom = zs_10m.map(removeGeometry).flatten()
207 zs_20m_no_geom = zs_20m.map(removeGeometry).flatten()
208

209

210 # Merge all of the data together
211 def cleanJoin(feature):
212 return ee.Feature(feature.get(’primary’)).copyProperties(feature.get(’secondary’))
213

214 filter = ee.Filter.equals(leftField = ’system:index’, rightField = ’system:index’)
215 simpleJoin = ee.Join.inner(’primary’, ’secondary’)
216 zonal_stats = simpleJoin.apply(zs_10m_no_geom, zs_20m_no_geom, filter).map(cleanJoin)
217

218 # Export the data to Google Drive
219 task = ee.batch.Export.table.toDrive(collection=zonal_stats, description=output_file,
220 fileFormat=’CSV’, fileNamePrefix=output_file,
221 folder=output_folder)
222

223 task.start()
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