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Abstract

This paper studies whether the adoption of a technology that increases the
production of a staple crop differs between households who are buyers, sellers,
or self-sufficient with respect to the staple crop. I develop a theoretical model
that shows that if buying or selling staples incurs large fixed costs, technology
adoption varies with market participation; if fixed costs are small, however,
technology adoption does not vary with market participation. Whether tech-
nology adoption varies by market participation has implications for how to
target interventions promoting technology adoption such as input subsidy
programs. I estimate how adoption varies with market participation using
data from a randomized controlled trial of high-yielding varieties of maize
developed for western Kenya. Treatment effects across market participation
groups are neither large nor statistically significant. These results suggest
that transaction costs in output markets are not large enough to shape the
pattern of adoption of a production technology.
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1. Introduction

The global poor disproportionately reside in rural sub-Saharan Africa,

work in agriculture, and are spatially dispersed (Bank, 2018). Spatial dis-

persion makes participation in markets costly due to transaction costs, in

particular transportation costs or search costs (de Janvry et al., 1991, Key

et al., 2000). A well-studied market with transaction costs in rural sub-

Saharan Africa is the output market for staple crops (Barrett, 2008, Renkow

et al., 2004). One implication of transaction costs in the output market for a

staple crop is that they can cause an agricultural household to select out of

the market as either a seller or a buyer. A second implication of transaction

costs in the output market for a staple crop is that they create a household-

specific shadow value of staple output (de Janvry et al., 1991, Key et al.,

2000). Proportional transaction costs, for example due to transportation

costs, create a price wedge such that the staple buying price is greater than

the staple selling price. Fixed transaction costs, for example due to search

costs, make the relationship between staple production and household utility

non-convex; that is, output has locally increasing returns for a household

near the threshold of being autarkic or a seller with respect to output mar-

kets (Barrett, 2008, Key et al., 2000). In this way, an agricultural household’s

market participation, on both the extensive and intensive margins, signals

the shadow value of their output.

Transaction costs in output markets have been shown to affect the supply

response of households (de Janvry et al., 1991, Key et al., 2000). More recent
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studies on production decisions of agricultural households in sub-Saharan

Africa focus on the discrete decision of a household to adopt a new produc-

tion technology (Suri and Udry, 2022). This paper studies the intersection

of these literatures: how do transaction costs in output markets affect an

agricultural household’s incentive to to adopt a new production technology?

The interdependence between output market participation and technology

adoption is a subject of interest in both the market participation literature

(Barrett, 2008, Renkow et al., 2004) and the technology adoption litera-

ture (Suri and Udry, 2022). The relationship between market participation

and technology adoption is of interest for understanding both the economic

decision-making of agricultural households and potential implications for the

targeting of programs promoting technology adoption.

This paper studies the relationship between technology adoption and mar-

ket participation both theoretically and empirically. Section 2 develops and

analyzes a theoretical model of technology adoption in which buying and sell-

ing staples incurs fixed costs. The household model shows that transaction

costs in output markets incentivize technology adoption such that technol-

ogy adoption is both an income source as well as a means of either reducing

costs of buying staples or overcoming costs of selling staples. Incentives for

technology adoption are greatest for land poor households near the threshold

of becoming self-sufficient or sellers, as well as land rich households that are

sellers. When fixed costs in output markets are large, the model predicts that

when households receive full information about a technology’s productivity,
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adoption will be greatest among households near the margins of buying or

selling staples, as well as households already selling staples. When fixed

costs are small, however, technology adoption does not vary with market

participation.

Section 3 extends the theoretical analysis to study the policy relevance of

the interdependence between technology adoption and market participation

for a common policy for promoting technology adoption: input subsidies. A

temporary subsidy can stimulate long-term technology adoption if a house-

hold learns from adopting the technology at a subsidized price and increases

its expected yields from subsequent technology adoption compared to its

initially pessimistic beliefs (Carter et al., 2014). To encourage technology

adoption in this context, many governments in sub-Saharan Africa subsidize

prices of agricultural production technologies for targeted agricultural house-

holds. Due to the costs of subsidies to the government, many agricultural sub-

sidy programs target particular households to receive the subsidy. Yet there

remains debate about the effectiveness of agricultural subsidy programs, in-

cluding how to target and design these programs (Giné et al., 2022). Key

features of subsidy programs are targeting based on household land wealth

and design of the subsidy level, with programs tending to target households

with relatively greater land wealth that produce food on a semi-commercial

basis, as shown in Table 1.

Section 3 models input subsidy program targeting and design by an op-

timizing policymaker. The policymaker chooses input subsidy program tar-
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geting and design for a population of households distributed over the land-

financial wealth space that choose technology adoption following the model

developed in Section 2. I model the policymaker’s problem over two seasons.

In season one, the household is pessimistic about the physical returns from

adopting inputs and chooses its level of input adoption given a subsidy level.

In season two, the household has full information about the input’s produc-

tivity and can adopt at the full market price. The policymaker maximizes

season two household expenditures on inputs less season one program ex-

penditures on subsidies. I parameterize the model with estimates from data

collected in surveys with agricultural households in western Kenya. Under

the empirical endowment distribution, households are concentrated at low

levels of land and wealth endowments. With transaction cost estimates from

the literature, the optimal program provides an 43% subsidy to households in

the top 99.7% of the land endowment distribution; households adopting the

technology by the optimal subsidy are primarily those for whom technology

adoption allows them to transition from being buyers to self-sufficient with

respect to staples, providing a rationale for governments to specifically tar-

get these land-poor, non-commercial staple producers. Without transaction

costs, however, the optimal program provides an 60% subsidy to households

in the top 60.1% of the land endowment distribution, and adoption does not

vary by market participation.

Section 4 describes the context for the empirical analysis. Data come

from a randomized controlled trial in western Kenya (Bird et al., 2022).
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The randomized controlled trial randomly assigned communities to receive

information about new hybrid maize varieties of the staple crop, maize, that

mature during the region’s short growing seasons. The theoretical model in

this paper predicts that technology adoption could be driven by households

valuing the technology’s effect on their purchases or sales of maize. In the

study sample, buyers pay higher prices for maize than they would receive

as a seller due to both a time-invariant wedge between buying and selling

prices as well as higher prices in the buying season. Additionally, households

vary in their participation in output markets for maize from net buyers, to

autarkic, to net sellers.

Section 5 estimates the relationship between technology adoption and

market participation in the context of the randomized controlled trial. For

households that sold maize in the year prior to the study, treatment increases

average technology adoption on the extensive margin by 18 percentage points

(pp) off of a base of just 2 percent adoption by sellers in the control group.

For households that were autarkic or buyers with respect to maize markets in

the year prior to the study, the treatment effect differed from sellers by just

1-3pp, a small difference both economically and statistically. In terms of to-

tal adoption relevant to policymakers, treatment effects are relatively larger

for seller households but do not differ from autarkic or buyer households

with statistical significance. The larger point estimate on total adoption is

consistent with sellers having more land on which to apply the productive

technology, which is consistent with the theoretical model as well as descrip-
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tive statistics in the study sample. The results suggest that, in the study

context, transaction costs in output markets are not large enough to shape

the pattern of adoption of a production technology.

The theoretical and empirical analyses in this paper contribute to our un-

derstanding of the interdependence between technology adoption and market

participation in smallholder agriculture. The theoretical analysis in this pa-

per shows that the relationship between technology adoption and market

participation is ambiguous, and depends on the magnitude of fixed costs

of transacting in output markets. When transaction costs are sufficiently

large, this deters technology adoption by households that would remain au-

tarkic even when adopting the productive technology. When transaction

costs are small, however, technology adoption does not vary with market

participation. The empirical analysis in this paper does not find statistically

significant differences in a technology adoption intervention’s effects across

market participation groups, consistent with a context with relatively small

fixed costs of transacting in output markets.

Whether technology adoption varies with market participation also is rel-

evant for policies promoting technology adoption such as input subsidies, as

shown by the policy simulation in Section 3. Most input subsidy programs

target relatively wealthy households that produce a food surplus to sell on

the market, as shown by the program targeting criteria in Table 1. The opti-

mality of this approach critically depends on the assumption that technology

adoption is greater for sellers of staples, and may implicitly assume relatively
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large fixed costs of transacting in output markets. The empirical analysis

in this paper, however, does not find statistically significant differences in a

technology adoption intervention’s effects across market participation groups,

consistent with a context with relatively small fixed costs of transacting in

output markets. Thus the findings in this paper suggest that targeting input

subsidies primarily to sellers of staples may exclude many households that

would be willing to adopt new production technologies.

2. Economics of Technology Adoption and Market Participation

This section studies the relationship between technology adoption and

market participation in smallholder agriculture in theory. Appendix A presents

the theoretical household model of technology adoption and output market

participation for staple crops as a formal optimization problem. The model

studies adoption of a production technology when entering output markets

as a seller or buyer incurs transaction costs. The insight from the model is

that when market participation is costly, households value technology adop-

tion both as an income source as well as a means of either reducing costs

of buying staples or overcoming costs of selling staples. To see how signif-

icant these costs are in technology adoption decisions, this section presents

a numerical analysis parameterized with estimates from western Kenya, the

context for the subsequent empirical analysis.

The numerical analysis simulates an intervention that increases household

expectations about a production technology’s physical yield. Table A.1 shows
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Table 1: Agricultural input subsidies often target households with greater landholdings
and semi-commercial market orientation
Start Country Targeting criteria Subsidy %

Acres owned* Other
Min Max

2002 Zambia 2.5 Cooperatives 50-60
2005 Malawi 1.0 Productive poor 64-95
2007 Kenya 1.0 100
2007 Rwanda 0.5 75:50:25
2008 Tanzania 2.5 Female 50
2008 Zambia 2.5 Cooperatives 75-79
2009 Mozambique 1.2 12.5 Progressive 73
2011 Zimbabwe 1.2 90
2012 Nigeria 1.0 Non-commercial 50
2019 Uganda 3.0 5.0 Farmer groups 67:50:33

Notes: *Maize acres only for 2005 Malawi, 2008 Zambia, and 2009 Mozambique. 2002
Zambia is the Fertilizer Support Programme (Druilhe and Barreiro-Hurlé, 2012, Mason
and Tembo, 2014, Mason et al., 2013, Minde et al., 2008, World Bank, 2010); 2005
Malawi is the Agricultural Input Support Programme (Druilhe and Barreiro-Hurlé, 2012,
Kilic et al., 2015, Lunduka et al., 2013, Minde et al., 2008); 2007 Kenya is the National
Accelerated Agricultural Input Programme (Druilhe and Barreiro-Hurlé, 2012); 2007
Rwanda is the Crop Intensification Programme (Druilhe and Barreiro-Hurlé, 2012); 2008
Tanzania is the National Agricultural Input Voucher System (Druilhe and
Barreiro-Hurlé, 2012, Pan and Christiaensen, 2012); 2008 Zambia is the Farmer Input
Support Programme (Mason and Smale, 2013, Mason et al., 2013); 2009 Mozambique is
the Farm Input Subsidy Programme (Carter et al., 2013); 2011 Zimbabwe is the
Electronic Voucher Program (FAO, 2012); 2012 Nigeria is the Growth Enhancement
Support Scheme (Wossen et al., 2017); 2019 Uganda is the Agriculture Cluster
Development Project (World Bank, 2015).
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the parameter values for the numerical analysis, which come from the market

participation literature and from household survey data collected in western

Kenya. Estimated yield gains from technology adoption post-intervention

are almost twice as large as households’ expected yield gains from technology

adoption pre-intervention. I derive fixed costs of transacting in staple markets

using estimates by Renkow et al. (2004) for maize in western Kenya, the

same crop and region studied in the subsequent empirical analysis; the fixed

cost of selling is about 188 US dollars and the fixed cost of buying is about

32 US dollars. Kirimi et al. (2011) note, however, increased competition

in the maize marketing sector over time that would be consistent with a

trend of transaction costs decreasing over time. I still estimate, however,

substantial proportional costs of transacting in staple markets using data

from western Kenya; during the harvest period, the period with the most

maize transactions, the buying price of maize is about 20% greater than the

selling price of maize.1

The numerical analysis studies two outcomes. The first outcome is out-

put market participation, which is a function of the household’s endowment

of financial and land wealth as well as its expected yield gains from tech-

nology adoption. The second outcome is technology adoption. The analysis

shows household behavior both pre-intervention, prior to introduction of the

new technology, and post-intervention, after the new technology is available.

1Appendix B details the approach for estimating the price wedge between buying and
selling prices for maize using my data.
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The simulation mirrors the subsequent empirical analysis, a randomized con-

trolled trial that provides information about new, high-yielding varieties of

maize to some communities and no information to other communities.

Fig. 1 plots household market participation and technology adoption as

functions of endowments of financial wealth and land wealth. Fig. 1A shows

market participation at baseline, prior to availability of the new technology.

Households with low land wealth relative to financial wealth buy staples,

households with high land wealth relative to financial wealth sell staples, and

households in between are autarkic with respect to staple output markets.

Fig. 1B plots, for each land-wealth pair, the intensity of the household’s

technology adoption. Notably, households adopt the technology when they

are near the thresholds of transitioning out of buying staples or into selling

staples, or when they are beyond the threshold of selling staples. Three

types of households do not adopt the technology. First, households with

little financial wealth cannot take on the fixed costs of technology adoption.

Second, households with little land wealth cannot make up for the fixed costs

of adoption even when applying the technology on all of their land.2 The

third group of non-adopting households are autarkic with respect to staple

output markets and are not near the threshold of either buying or selling

2Proportional transaction costs in output markets affect these groups of non-adopters
differently. Higher buying prices due to transaction costs reduces the land wealth threshold
for non-adoption, that is more land-poor households adopt the technology than in the
case without transaction costs. Lower selling prices due to transaction costs increases the
liquidity wealth threshold for non-adoption, that is fewer liquidity-poor households adopt
the technology than in the case without transaction costs.
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staples. These households produce a sufficient amount of staples without

technology adoption to meet household demand but would not sell enough

staples with technology adoption to make up for the fixed costs of both

technology adoption and market participation.

Fig. 1C shows market participation after the production technology is

available and households take their technology adoption decision. The dot-

ted lines indicate that high yields induce some households to adopt the tech-

nology and change their market participation. In the top-left corner, some

households transition from not adopting and buying staples to adopting and

being autarkic with respect to staple markets; in that sense, each these house-

holds was “almost autarkic” with respect to staple markets prior to the new

production technology. In the bottom-right corner, some households transi-

tion from not adopting and being autarkic to adopting and selling staples;

in that sense, each of these households was an “almost seller” with respect

to staple markets prior to the new production technology.

The first prediction from the household model to study empirically is that

transaction costs prevent some households from participating in markets as

either a buyer or seller of staples. This prediction reproduces a result from

the literature on output market participation, and is central to the model’s

main prediction about the interdependence between technology adoption and

market participation of agricultural households.

The second, and more novel, prediction from the household model to

study empirically is that the household’s technology adoption decision de-
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pends on both its staple surplus without technology adoption and its change

in staple surplus due to technology adoption, as shown by comparing Figs.

1B and 1C. The technology is adopted by households that can transition from

being buyers to autarkic with respect to staple output markets, households

that can transaction from being autarkic to sellers, and households that re-

main sellers. Additionally, the technology is adopted by few households that

would remain autarkic even with technology adoption.

Importantly, the prediction that technology adoption varies with output

market participation would not come from a model without relatively large

transaction costs in output markets. I study the case with no transaction

costs in output markets in Figs. 1D-F. In Fig. 1D, households with low land

wealth relative to financial wealth buy staples and households with high land

wealth relative to financial wealth sell staples; absent transaction costs in out-

put markets, no households are autarkic with respect to output markets. Fig.

1E plots, for each land-wealth pair, technology adoption. Adoption is mainly

constrained by the fixed costs of technology adoption limiting adoption by

households that are land poor or financially poor. Adoption is not, however,

shaped by output market participation in the absence of transaction costs.
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Figure 1: Market participation and technology adoption in land-wealth space. Initial wealth measured in 2015
Kenyan shillings (about 100 shillings per US dollar). Technology adoption measured in acres planted to the new technology.
Graphs A-C show numerical results with transaction costs in output markets. Graphs D-F show numerical results without
transaction costs in output markets.
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3. Policy Relevance for Targeting and Designing Input Subsidies

This section shows how, in theory, interdependence between technology

adoption and market participation can have policy implications for targeting

and designing programs to promote technology adoption. In particular, I

study targeting and design of an agricultural input subsidy program by a

policymaker who maximizes net benefits from the program. Targeting is

based on household land wealth such that the policymaker sets targeting

criteria with a minimum land wealth and maximum land wealth. Program

design is based on the subsidy level. I measure benefits from the program by

input investment by agricultural households in the season after the subsidy

program.

The policy problem includes two periods of technology adoption by agri-

cultural households. In the first period, the program offers subsidies to house-

holds that have initially pessimistic expectations about physical returns from

input adoption. In the second period, the subsidy is removed but households

that adopted in the first period have fully updated beliefs about the tech-

nology’s productivity. Conditional on household decisions, the policymaker

chooses program targeting and design. In particular, I study an agricultural

input subsidy program with targeting by household land wealth and design

by subsidy level.3

3To focus on targeting and subsidies, the policy model assumes away other program
features that may be sensitive to the interdependence of technology adoption and market
participation. First, the model has no maximum size of input package subsidized, which
is a common policy in practice. Second, I study a one-season subsidy whereas the number
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Non-convexity of the household’s indirect utility function makes tech-

nology adoption a non-monotonic function of household endowments and

requires targeting subsidies to discrete categorizations of households.4 This

also corresponds with how governments target subsidy programs, in partic-

ular by land endowments. I estimate an empirical endowment distribution

in two steps: first, I approximate the distribution of land by fitting a log-

normal distribution to the data from western Kenya; second, I approximate

the distribution of income as a function of land.5 Fig. 2 plots the differ-

ence in probability weights between the empirical distribution and the uni-

form distribution in land-wealth endowment space. The uniform distribution

overweights land- and wealth-rich households relative to the empirical dis-

tribution. The mode of the empirical distribution is at low levels of land

and wealth endowments. For the policymaker, the important feature of the

empirical endowment distribution is that households are concentrated at low

levels of land wealth, which places more weight on lower levels of the land

of seasons could be endogenous to the policymaker. Third, the model is not set up to
compare outcomes from the subsidy intervention with alternative interventions such as
relaxing household capital constraints or reducing transaction costs (for example, through
infrastructure investment).

4As with the household problem, the policy problem would simplify greatly if household
technology adoption and market participation did not incur fixed costs. In that case,
household technology adoption would be a monotonic function of endowments. Then
the policymaker could implicitly choose a continuous optimal subsidy function defined
over explicitly chosen parameters of a distribution defined over land wealth such that the
optimal subsidy would vary continuously over land wealth rather than making discrete
jumps.

5I estimate that the distribution of households in land wealth is T ∼
Lognormal(0.0791052, 0.5446223). I estimate that the distribution of households in fi-
nancial wealth is A ∼ Lognormal(11.01525 + 0.041158 · log(T ), 1.237).
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and wealth distributions when evaluating the costs and benefits of subsidy

programs.

Appendix C mathematically defines the policymakers’ cost, benefit, and

welfare functions. Costs of the program come from subsidizing inputs. Ben-

efits of the program come from input investment in the season after the

subsidy program. Finally, the policymaker chooses program targeting and

design to maximize welfare as defined by the difference between benefits and

costs. The welfare function is not necessarily convex over the choice variables

due to fixed costs of technology adoption and output market participation

in the household problem. Therefore I use numerical analysis to solve the

policymaker’s targeting and design problem.

Fig. 3 shows a program’s net benefits under an optimal subsidy when

transaction costs in output markets are relatively large. When transaction

costs in output markets are relatively large, the optimal policy is a 43% sub-

sidy targeted to households with at least 0.3 units (acres) of land, which

includes 99.7% of agricultural households. Not all households satisfying the

targeting criterion for land adopt, however. In particular, adopting house-

holds primarily are “almost autarkic” with respect to staple markets, in the

sense that technology adoption allows them to transition from buying staples

to being self-sufficient in staple production. This finding would support the

approach of agricultural input subsidies in Table 1 to target households with

little land as well as households that are non-commercial producers of staples

(e.g. Nigeria); this result is contrary, however, to targeting households with
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Figure 2: Empirical probability less the uniform probability. Under a uniform
endowment distribution, each cell would have a probability weight around 1× 10−4.
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more land as well as households belonging to groups to jointly market output

(e.g. Uganda, Zambia).

In contrast, Fig. 4 shows a program’s net benefits under an optimal

subsidy when transaction costs in output markets are non-existent. The

optimal policy is a 60% subsidy targeted to households with at least 1.0 units

(acres) of land, which includes 60.1% of agricultural households. Despite

the targeting criterion for land being more restrictive than the case with

transaction costs, adoption without transaction costs is higher due to more

households selecting into the program. Importantly, without transaction

costs there is no need to apply additional targeting criteria such as proxies

for market participation. In fact, applying such criteria when transaction

costs do not shape technology adoption would reduce program benefits, both
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Figure 3: Net program benefits when transaction costs in output markets are
relatively large under the optimal subsidy of 43%. The optimal program when
transaction costs in output markets are relatively large offers subsidies to households with
more than 0.3 units of land, making up 99% of the population; for a population of one
million, the aggregate net benefit is 10.99 million USD.

for the policymaker and for individual households.

4. Randomized Controlled Trial in Western Kenya

I empirically estimate the interdependence between technology adoption

and market participation in the context of western Kenya, where the main

staple crop is maize. Data come from a randomized controlled trial with

agricultural households in western Kenya for an impact evaluation of West-

ern Seed Company hybrid maize varieties (Bird et al., 2022). The study

sample includes 700 households in the moist mid-altitude (henceforth, mid-

altitude) agro-ecological zone of western Kenya, where adoption of hybrid
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Figure 4: Net program benefits when transaction costs in output markets are
non-existent under the optimal subsidy of 60%. The optimal program when trans-
action costs in output markets are non-existent offers subsidies to households with more
than 1.0 units of land, making up 60% of the population; for a population of one million,
the aggregate net benefit is 42.55 million USD.
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maize varieties lags behind other regions of the country. Hybrid maize vari-

eties from Western Seed Company are new to this region of Kenya and their

early maturity is well-suited to the short growing seasons in the region.6

The impact evaluation randomized an intervention to encourage adoption

of maize hybrids from Western Seed Company. The experimental design is

shown in Fig. 5. Western Seed Company identified potential communities

where they could establish demonstration sites to provide information about

the varieties to households in the communities. The randomized controlled

trial stratified potential demonstration sites into pairs of sites with similar

growing conditions, then randomly assigned one of the communities to receive

a demonstration site (the “seed treatment”) and one of the communities

to not receive a demonstration site (the “seed control”). Seed treatment

communities received the demonstration sites and agronomic information

about the hybrid maize varieties in 2013. The promotional activity in 2013

was specifically designed for households to update their beliefs about the

physical yield gain from the hybrid maize technology.

Data come from three rounds of household surveys. Surveys collected

data on baseline characteristics in late 2013, midline impacts of the interven-

tion in early 2015, and endline impacts of the intervention in early 2016. Fig.

6The full sample also includes 1100 households in the moist transitional agro-ecological
zones of western and central Kenya, where hybrid maize adoption is almost universal and
maize is a smaller proportion of household expenditures; these characteristics make the
theory in this paper less applicable to the moist transitional zones, therefore I focus my
analysis on the 700 households sampled from the mid-altitude zone.
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Figure 5: Randomized interventions and sampling
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6 shows the timing of the randomized intervention relative to the timing of

the household surveys.

For the empirical analysis, the outcome of interest is household adoption

of hybrid maize varieties from Western Seed Company in either of the two

post-treatment main seasons (2014 or 2015). Outcomes include adoption on

the extensive margin (0/1) and total adoption (in kilograms).

The explanatory variable of interest is household market participation.

Surveys collected data on maize sales for each season of the study period, in-

cluding total quantity sold and the price received for the largest sale. Surveys

collected data on maize purchases during the endline survey, including total

quantity and price of purchases over four-month periods from February 2015

to January 2016. Households also reported whether their purchases during

this time period differed from a typical year and, if so, reported the quan-

tity of maize that they purchase in a typical year. I construct my preferred

measure of market participation from the difference between a household’s

baseline sales of maize and its typical purchases of maize, neither of which

should be affected by assignment to treatment.
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Figure 6: Study timeline

5. Treatment Effects by Market Participation

I test the theoretical model’s predictions of how technology adoption

varies with expected market participation using data from the randomized

controlled trial in western Kenya. I model an outcome for household i in

village v, site s, matched pair p, and time period t as

Outcomeivspt = ρTreats+
∑
k

[δkTreatsMP k
ivsp+γ

kMP k
ivsp]+[νp+Eivspt] (1)

where Treats = 1 for households near sites randomly assigned to receive the

seed information (= 0 otherwise), MP k
ivsp = 1 for households with baseline

market participation k, νp is a matched pair fixed effect, and Eivspt is an error

term clustered by village. The parameters of interest are δk: the difference

in the effect of the information intervention on adoption for households with
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expected market participation k relative to the omitted category of market

participation.

This section presents summary statistics and estimates of Eq. (1) for two

different definitions of market participation. The first definition is based on

the extent of market participation and places each household in one of three

categories based on baseline market participation: net seller, autarkic, or net

buyer household. This is my preferred empirical measure as the relatively

small number of categories leaves a relatively large number of households

in each category, making estimates less sensitive to the value of any one

observation. A shortcoming of studying the extent of market participation

is that it deviates from the theoretical model in which household technology

adoption also depends on the household’s intensity of market participation.

Therefore I also present a second set of results based on the intensity of

market participation that further sub-divides households into “deep” and

“almost” market participants.

5.1. Extent of Market Participation

Table 2 shows summary statistics, stratified by the extent of market par-

ticipation at baseline and treatment assignment. Relative to all other groups,

sellers have the most experience using hybrid maize varieties. Since the the-

oretical model assumes household size is constant across households, I sum-

marize per capita measures for acres in total and in maize, maize yield and

harvest, and income. Going from buyer to autarkic to seller households, we
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see large increases in acres in total and in maize, maize harvest, and income,

with the increase in maize income being proportionally much larger than the

increase in total income. These trends are consistent with the theoretical

model. To further relate these measures to the theoretical model, I show the

ratio of total income to acres (total and maize) as well as the value of maize

production as a share of full income. Going from buyer to seller households,

the ratio of income to acres decreases and the value of maize production as

a share of full income increases, consistent with the theoretical model.

Beyond farm size, income, and household size, the theoretical model ab-

stracts away from other factors that may differ across households and relate

to both their market participation and technology adoption. The remainder

of Table 2 summarizes a number of these factors for the sample. Going from

buyer to seller, several measures of household welfare improve; in particular,

the probability of poverty and realized food insecurity decrease while dietary

diversity increases.

Table 2 also summarizes variables related to the randomized controlled

trial and the outcome of interest in this study: adoption of Western Seed

Company hybrids. A cross-cutting fertilizer treatment that is not the focus

of this paper is well-balanced across market participation groups. Adoption

of Western Seed Company hybrids is greater in the treatment group. I now

turn to estimating differences in adoption due to assignment to treatment in

a regression framework.

Table 3 shows estimates of Eq. (1) with the omitted category of mar-
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Table 2: Summary statistics for mid-altitude sub-sample

Buyer Autarkic Seller
(1) (2) (3) (4) (5) (6)

Control Treat Control Treat Control Treat
Hybrid user in main season 0.21 0.21 0.25 0.32 0.31 0.32
Dry maize yield (kg/ac) 147.53 216.73 219.10 229.95 254.93 389.22
Acres (total) 1.63 0.99 1.62 1.60 2.28 2.07
Acres (maize) 1.34 0.82 1.23 1.31 1.76 1.67
Household size 6.33 5.71 5.40 6.07 5.77 6.23
Per capita measures

Acres (total) 0.29 0.20 0.33 0.29 0.47 0.41
Acres (maize) 0.24 0.16 0.26 0.24 0.39 0.34
Maize harvest (kg) 29.20 28.57 48.77 44.98 93.73 90.85
Maize income (100 ksh) 8.40 8.22 14.04 12.94 26.97 26.14
Income (100 ksh) 155.37 174.57 256.14 208.84 277.93 339.15

Income (100000 ksh/ac total) 0.79 1.73 1.13 1.02 0.82 1.19
Income (100000 ksh/ac maize) 0.95 2.31 1.43 1.25 1.03 1.58
Maize income share 0.09 0.24 0.09 0.12 0.13 0.12
Poverty probability 0.37 0.35 0.28 0.28 0.28 0.31
Food insecure 0.81 0.75 0.63 0.61 0.58 0.48
Dietary diversity (0-12) 5.82 6.43 6.36 6.51 6.80 6.84
HH head: Male 0.66 0.59 0.61 0.64 0.68 0.67
Fertilizer treatment 0.45 0.45 0.51 0.51 0.53 0.56
Adopted Western Seed 0.01 0.16 0.02 0.20 0.02 0.19
Observations 120 124 101 84 79 82
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ket participation being seller households. Column (1) shows estimates with

the outcome variable being an indicator for adopting Western Seed and using

data from both midline and endline years. As seen in Table 2, contamination

of the control group is not an issue as adoption of Western Seed is virtually

non-existent in the control group across market participation groups. On av-

erage across the midline and endline years, treatment increases adoption by

deep sellers by 18 percentage points (pp), an estimate that is large and statis-

tically significant. Relative to sellers, all other market participation groups

have average treatment effects that are smaller by 1-3pp, a small difference

in economic terms. The effect of the interaction between treatment and

other market participation groups does not differ from zero independently

or jointly at conventional levels of statistical significance. Thus, differences

in adoption by market participation are neither economically large nor dif-

ferent from zero with statistical significance. This pattern of results holds

across both post-intervention years, as shown by the similar estimates for

the pooled sample, midline sub-sample, and endline sub-sample in columns

(1)-(3).

While technology adoption on the extensive margin studied in columns

(1)-(3) relates to the model of household technology adoption in Section 2,

technology adoption in total is the policy-relevant outcome in the model of

program targeting in section 3. For example, a private sector program such

as those by Western Seed presumably would seek to target their technology

to the greatest proportion of households with the greatest expected expendi-
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Table 3: Treatment effects on technology adoption

Western Seed (0/1) Western Seed (kg)
(1) (2) (3) (4) (5) (6)

Seed treatment, ρ̂ 0.18∗∗∗ 0.18∗∗∗ 0.18∗∗∗ 0.88∗∗ 0.95∗∗ 0.82∗

(0.04) (0.05) (0.04) (0.26) (0.29) (0.34)

Interaction effects, δ̂k

Autarkic -0.01 -0.06 0.04 -0.20 -0.47 0.07
(0.04) (0.04) (0.05) (0.36) (0.38) (0.54)

Buyer -0.03 -0.04 -0.02 -0.20 -0.26 -0.14
(0.05) (0.05) (0.06) (0.33) (0.36) (0.40)

Direct effects, γ̂k

Autarkic 0.00 0.01 -0.01 -0.01 0.10 -0.11
(0.02) (0.02) (0.03) (0.20) (0.12) (0.38)

Buyer -0.02 -0.02 -0.02 -0.23 -0.09 -0.37
(0.02) (0.01) (0.03) (0.16) (0.07) (0.30)

Mean, Control Seller 0.02 0.01 0.03 0.19 0.05 0.33
F-test p-value, null: δk = 0, ∀k 0.86 0.36 0.62 0.80 0.45 0.80
Observations 1178 589 589 1178 589 589
Midline Yes Yes No Yes Yes No
Endline Yes No Yes Yes No Yes

Models control for matched pair.

Standard errors in parentheses clustered by 42 villages.

Significance: * = 10%, ** = 5%, *** = 1%
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tures on their product. For a public sector program such as an input subsidy

modeled in section 3, policymakers seek to increase expenditures on inputs.

Table 3, columns (4)-(6) present treatment effects on quantity of Western

Seed used (in kilograms). The treatment effect on total adoption is greatest

for sellers relative to other market participation groups at 0.88 kilograms.

The treatment effect on total adoption is lower for other market participa-

tion groups by 0.20 kilograms, corresponding with a decrease of 23%. The

decrease in adoption in total when going from sellers to other market partic-

ipation groups is larger in magnitude than the decrease in adoption on the

extensive margin in columns (1)-(3). This is consistent with the interpre-

tation that sellers are not more likely to adopt Western Seed hybrids but,

among those who adopt, they adopt more intensively than adopters of other

market participation groups. As with the extensive margin of adoption, for

total adoption the effect of the interaction between treatment and other mar-

ket participation groups does not differ from zero independently or jointly at

conventional levels of statistical significance.

5.2. Intensity of Market Participation

A shortcoming of studying the extent of market participation is that it

breaks from the theoretical model in which household technology adoption

also depends on the household’s intensity of market participation. To study

the intensity of market participation, I define “deep” and “almost” market

participants based on quantities of net marketed surplus to create a distri-

29



bution of market participation similar to the observed market participation

across years in the control group. For example, 11% of control group house-

holds are net sellers each year; the proxy indicator for this group equals one

for the top 11% of sellers at baseline, which includes all households with over

270 kilograms of maize sold.7 The cross-sectional data used to stratify the

market participation groups may be similar to the information available to

programs for applying targeting criteria for technology adoption programs.

Table 4 shows summary statistics, stratified by the intensity of market

participation at baseline and treatment assignment. Stratifying by intensity

of market participation effectively sub-divides both buyer and seller house-

holds into two categories each of buyer and seller households. As a result,

the pattern of summary statistics stratified by the intensity of market partic-

ipation is similar to the pattern of summary statistics stratified by the extent

of market participation in Table 2. Going from deep buyer and almost au-

tarkic households to deep seller households, we see large increases in acres in

total and in maize, maize yield and harvest, and income, with the increase

in maize income being proportionally much larger than the increase in total

income. These trends are consistent with the theoretical model. Going from

deep buyers to deep sellers, the ratio of income to acres decreases and the

711% are net sellers in each of the three years and 17% percent are net sellers in two
of the three years; 30% are net buyers in each of the three years of the study and 15% are
net buyers in two of the three years of the study; the remaining 27% percent of households
are approximately autarkic, as their market participation behavior is not dominated by
either buying or selling.
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value of maize production as a share of full income increases. As with the

pattern in Table 2, the pattern in Table 4 is consistent with the theoretical

model.

The remainder of Table 4 also is similar to Table 2. Going from deep buyer

to deep seller, several measures of household welfare improve; in particular,

the probability of poverty and realized food insecurity decrease while dietary

diversity increases. Both seed and fertilizer treatments are well-balanced

across market participation groups. Adoption of Western Seed Company

(WSC) hybrids is greater in the treatment group, with the greatest rates of

adoption for deep sellers.

A key difference for the analysis stratified by intensity of market partic-

ipation is that further sub-dividing the sample leaves relatively small sub-

samples for each market participation group. In particular, I only define 51

households as deep sellers, 32 in treatment and 19 in control. Given that the

outcome variable for the analysis is a 0/1 indicator of technology adoption,

and the average treatment effect across market participation groups in Ta-

ble 3 is relatively small, this makes each deep seller observation potentially

pivotal when estimating differences in technology adoption relative to other

market participation groups. With this caveat in mind, I turn to interpreting

regression estimates of treatment effects across market participation groups.
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Table 4: Summary statistics for mid-altitude sub-sample

Deep Buyer Almost Autarkic Deep Autarkic Almost Seller Deep Seller
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Control Treat Control Treat Control Treat Control Treat Control Treat
Hybrid user in main season 0.26 0.21 0.11 0.22 0.25 0.32 0.29 0.21 0.40 0.49
Dry maize yield (kg/ac) 128.98 222.21 185.10 205.78 219.10 229.95 224.94 210.77 349.64 668.04
Acres (total) 1.68 1.08 1.53 0.81 1.62 1.60 2.04 1.88 3.05 2.38
Acres (maize) 1.42 0.89 1.19 0.67 1.23 1.31 1.52 1.63 2.53 1.75
Household size 6.78 5.92 5.45 5.29 5.40 6.07 5.58 6.08 6.37 6.47
Per capita measures

Acres (total) 0.28 0.20 0.30 0.20 0.33 0.29 0.41 0.40 0.66 0.43
Acres (maize) 0.24 0.16 0.25 0.17 0.26 0.24 0.33 0.35 0.57 0.31
Maize harvest (kg) 26.71 26.13 34.32 33.52 48.77 44.98 68.80 59.07 172.47 140.51
Maize income (100 ksh) 7.68 7.52 9.88 9.65 14.04 12.94 19.80 17.00 49.63 40.43
Income (100 ksh) 152.84 193.57 160.50 136.57 256.14 208.84 197.96 314.31 530.48 377.94

Income (100000 ksh/ac total) 0.77 1.98 0.83 1.23 1.13 1.02 0.70 1.22 1.21 1.14
Income (100000 ksh/ac maize) 0.93 2.33 0.99 2.29 1.43 1.25 0.92 1.47 1.37 1.73
Maize income share 0.07 0.07 0.14 0.58 0.09 0.12 0.11 0.11 0.19 0.13
Poverty probability 0.36 0.35 0.41 0.36 0.28 0.28 0.29 0.33 0.22 0.28
Food insecure 0.85 0.80 0.72 0.66 0.63 0.61 0.65 0.62 0.37 0.25
Dietary diversity (0-12) 5.76 6.43 5.92 6.41 6.36 6.51 6.67 6.56 7.21 7.28
HH head: Male 0.74 0.63 0.50 0.51 0.61 0.64 0.63 0.78 0.84 0.50
Fertilizer treatment 0.42 0.40 0.50 0.56 0.51 0.51 0.57 0.58 0.42 0.53
Adopted Western Seed 0.01 0.16 0.01 0.16 0.02 0.20 0.03 0.16 0.00 0.23
Observations 80 83 40 41 101 84 60 50 19 32

Deep Buyer households bought more than 77 kilograms of maize at baseline.

Almost Autarkic households bought maize at baseline but less than 77 kilograms.

Deep Autarkic households neither bought nor sold maize at baseline.

Almost Seller households sold maize at baseline but less than 270 kilograms.

Deep Seller households sold more than 270 kilograms of maize at baseline.
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Table 5 shows estimates of Eq. (1) with the omitted category of market

participation being “deep seller” households. Column (1) shows estimates

with the outcome variable being an indicator for adopting Western Seed

and using data from both midline and endline years. As seen in Table 4,

contamination of the control group is not an issue as adoption of Western

Seed is virtually non-existent in the control group across market participa-

tion groups. On average across the midline and endline years, treatment

increases adoption by deep sellers by 23pp, an estimate that is large and

statistically significant. Relative to deep sellers, all other market participa-

tion groups have average treatment effects that are smaller by 6-9pp; these

estimates correspond with the treatment effect decreasing by 29-39%. This

relatively large effect, however, is sensitive to individual observations due to

the small sample for deep sellers; relatedly, the effect of the interaction be-

tween treatment and other market participation groups does not differ from

zero independently or jointly at conventional levels of statistical significance.

Thus, differences in adoption by market participation are economically large

but do not differ from zero with statistical significance. This pattern of

results holds across both post-intervention years, as shown by the similar es-

timates for the pooled sample, midline sub-sample, and endline sub-sample

in columns (1)-(3).

Table 5, columns (4)-(6) present treatment effects on quantity of Western

Seed used (in kilograms). The treatment effect on total adoption is greatest

for deep sellers relative to other market participation groups at 1.41 kilo-
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Table 5: Treatment effects on technology adoption

Western Seed (0/1) Western Seed (kg)
(1) (2) (3) (4) (5) (6)

Seed treatment, ρ̂ 0.23∗∗ 0.21∗∗ 0.24∗∗∗ 1.41∗∗ 1.19∗ 1.62∗∗

(0.07) (0.07) (0.07) (0.47) (0.51) (0.52)

Interaction effects, δ̂k

Almost Seller -0.08 -0.06 -0.10 -0.84 -0.43 -1.25
(0.08) (0.10) (0.08) (0.59) (0.64) (0.67)

Deep Autarkic -0.06 -0.10 -0.02 -0.72 -0.72 -0.73
(0.06) (0.08) (0.06) (0.51) (0.59) (0.60)

Almost Autarkic -0.08 -0.09 -0.07 -0.89 -0.85 -0.93
(0.09) (0.09) (0.10) (0.55) (0.59) (0.63)

Deep Buyer -0.07 -0.06 -0.08 -0.65 -0.34 -0.96
(0.07) (0.07) (0.07) (0.52) (0.61) (0.52)

Direct effects, γ̂k

Almost Seller -0.00 -0.01 0.01 0.12 -0.08 0.32
(0.02) (0.02) (0.02) (0.15) (0.10) (0.29)

Deep Autarkic -0.00 -0.00 0.00 0.08 0.03 0.13
(0.02) (0.02) (0.03) (0.16) (0.13) (0.28)

Almost Autarkic -0.01 -0.02 -0.00 -0.13 -0.13 -0.12
(0.02) (0.02) (0.03) (0.10) (0.09) (0.14)

Deep Buyer -0.03 -0.03 -0.02 -0.15 -0.16 -0.13
(0.02) (0.02) (0.03) (0.11) (0.09) (0.16)

Mean, Control Deep Seller 0.00 0.00 0.00 0.00 0.00 0.00
F-test p-value, null: δk = 0, ∀k 0.87 0.69 0.65 0.56 0.49 0.34
Observations 1178 589 589 1178 589 589
Midline Yes Yes No Yes Yes No
Endline Yes No Yes Yes No Yes

Models control for matched pair. Almost means selling <=270 kg or buying <=77 kg.

Standard errors in parentheses clustered by 42 villages.

Significance: * = 10%, ** = 5%, *** = 1%
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grams. The treatment effect on total adoption is lower for other market

participation groups by 0.65-0.89 kilograms, corresponding with a decrease

of 46-63%. Thus the decrease in adoption in total when going from deep

sellers to other market participation groups is larger in magnitude than the

decrease in adoption on the extensive margin in columns (1)-(3). This is

consistent with the interpretation that deep sellers both are more likely to

adopt Western Seed hybrids and, among those who adopt, adopt more inten-

sively relative to other market participation groups. As with the extensive

margin of adoption, for total adoption the effect of the interaction between

treatment and other market participation groups is economically large but

does not differ from zero independently or jointly at conventional levels of

statistical significance.

6. Conclusion

This paper contributes to a growing literature on agricultural technology

adoption in sub-Saharan Africa by studying how the impact of an interven-

tion promoting adoption of production technologies varies with an agricul-

tural household’s output market participation. The paper is motivated by the

theoretical insight that when participating in output markets for staple crops

is costly, this may deter some households from adopting productive technolo-

gies but also may create an incentive for other households to adopt productive

technologies, specifically those that can transition to becoming self-sufficient

or sellers by adopting a productive technology. The paper develops a formal
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theoretical model of an agricultural household to derive this result and uses

an empirical context in western Kenya to study its implications for the design

of policies to support technology adoption by smallholders and whether it is

consistent with agricultural technology adoption by smallholders.

I study the policy implications of the interdependence of technology adop-

tion and market participation by conducting a numerical analysis of the tar-

geting and design of a common policy for promoting technology adoption in

sub-Saharan Africa: input subsidies. The policymaker’s targeting and de-

sign problem nests the agricultural household model of technology adoption.

Heterogeneous technology adoption across households is due to differences

in household endowments of land and financial wealth as well as transaction

costs in agricultural output markets. As household characteristics change

along an observable criterion for targeting – land wealth – incentives to adopt

change as well. As a result program impacts vary with targeting and subsidy

level, and optimal subsidy targeting and level are interdependent. Under pa-

rameter values that include relatively large fixed costs of selling and buying

the staple, the optimal policy is to offer an 43% subsidy to households in

the top 99.7% of the land distribution. Households targeted by the optimal

subsidy are primarily households for whom technology adoption transitions

them from being buyer of the staple to being self-sufficient in staple produc-

tion. Under parameter values without fixed costs of selling and buying the

staple, however, the optimal policy is to offer a 60% subsidy to households in

the top 60.1% of the land distribution. Without transaction costs, adoption
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does not vary with market participation and thus there is no incentive for

the policymaker to further target the subsidy based on market participation.

I test the theoretical model’s predictions of how technology adoption

varies with expected market participation using data from a randomized

controlled trial of information about high-yielding maize varieties developed

for western Kenya, where the main staple is maize. For households that sold

maize in the year prior to the study, treatment increases average technology

adoption by 18pp off of a base of just 2 percent adoption by sellers in the

control group. For households that were autarkic or buyers with respect to

maize markets in the year prior to the study, the treatment effect differed

from sellers by just 1-3pp, a small difference both economically and statis-

tically. The results suggest that, in the study context, transaction costs in

output markets are not large enough to shape the pattern of adoption of a

production technology.

The theoretical and empirical analyses in this paper contribute to our un-

derstanding of the interdependence between technology adoption and market

participation in smallholder agriculture. The theoretical analysis shows that

the relationship between technology adoption and market participation is

ambiguous, and depends on the magnitude of fixed costs of transacting in

output markets. When transaction costs are sufficiently large, this deters

technology adoption by households that would remain autarkic even when

adopting the productive technology. This is relevant for policies promoting

technology adoption such as input subsidies, as this may make it optimal
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to target households based on their participation in output markets for sta-

ples, as shown by the policy simulation in Section 3. The empirical analysis,

however, does not find statistically significant differences in a technology

adoption intervention’s effects across market participation groups, consistent

with a context with relatively small fixed costs of transacting in output mar-

kets. Thus in this empirical context the findings in this paper suggest that

targeting input subsidies based on household participation in staple output

markets would not increase adoption of new production technologies.
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Appendix A. Household Model of Technology Adoption and Mar-

ket Participation

The household model is a sequential model of technology adoption in a

planting season and output market participation in a harvest season. The

household derives utility from consuming staples c and non-staples n in

the harvest season. For both staples and non-staples, utility increases with

consumption at a decreasing rate and as consumption approaches zero the

marginal utility from consumption approaches infinity.

The household produces staples from its land endowment and its tech-

nology adoption. Under the status quo technology, each household i has a

land endowment Ti that yields x staples per unit. In season t the household

can plant land to a technology T fi,t that includes hybrid seeds and comple-

mentary inputs like fertilizer. The household’s land endowment constrains

its land planted with the technology:

Ti ≥ T fi,t (A.1)
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I model yield gains from technology adoption as a linear function of adop-

tion; this is consistent with agronomic best practices and implicitly assumes

uniform responsiveness to seeds and fertilizers across fields for a single house-

hold (Bird et al., 2022). Household staple production is:

Q(Ti, T
f
i,t) ≡ Ti · x+ T fi,t · α (A.2)

To adopt the new technology, the household incurs a fixed cost F f that

accounts for searching for sellers of quality inputs and transporting inputs

from the market to the home. Additionally, the household pays the market

price P f for each unit of land planted under the new technology, which may

be subsidized at a rate st. Total expenditures on the fixed costs and unit

costs of technology adoption can be no greater than the household’s initial

endowment of financial wealth Ai. The household’s planting season liquidity

constraint is:

1
(
T fi,t > 0

)
· [F f + T fi,t · P f · [1− st]] ≤ Ai (A.3)

Financial wealth that is not spent on technology adoption in the planting

season is saved for the harvest season and earns an interest rate r. The

household’s full wealth in the harvest season is the sum of returns from

savings and the value of staple production at price P c:
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Yi,t ≡
[
Ai−1

(
T fi,t > 0

)
· [F f +T fi,t ·P f · [1−st]]

]
· [1+r]+Q(Ti, T

f
i,t) ·P c (A.4)

Household staple consumption comes from staples produced plus staples

bought bi,t less staples sold mi,t:

c(bi,t,mi,t) = Q(Ti, T
f
i,t) + bi,t −mi,t (A.5)

When the household buys staples (bi,t > 0), it incurs a fixed cost F b

representing the costs of searching for sellers. When the household sells

staples (mi,t > 0), it incurs a fixed cost Fm that includes costs of searching

for buyers and preparing harvest for sale. Additionally, transactions incur a

proportional cost τ representing the cost of transporting fixed quantities of

staples between the home and the market.

The household spends its full wealth on staples, non-staples, and costs

of transacting in staple markets.8 The household’s harvest period budget

8In the harvest period, households also could face an initial liquidity constraint pre-
venting outlays on transaction costs from exceeding savings from the planting season. In
the model this would reduce market participation by households with low financial wealth.
I abstract from this possibility by assuming households can pool money in the harvest sea-
son so that transaction costs and consumption expenditures occur simultaneously rather
than sequentially.
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constraint is:

c(bi,t,mi,t) ·P c + n+ 1
(
bi,t > 0

)
·F b + 1

(
mi,t > 0

)
·Fm + [bi,t +mi,t] · τ ≤ Yi,t

(A.6)

Since utility increases with both staple and non-staple consumption, Eq.

(A.6) binds:

n(bi,t,mi,t) = Yi,t−
[
c(bi,t,mi,t)·P c+1

(
bi,t > 0

)
·F b+1

(
mi,t > 0

)
·Fm+[bi,t+mi,t]·τ

]
(A.7)

The household chooses sequential technology adoption and market par-

ticipation to maximize its utility from consuming staples and non-staples

subject to its constraints. The household’s problem is

max
T f
i,t≥0

(
max

bi,t,mi,t≥0
u
(
c(bi,t,mi,t), n(bi,t,mi,t)

))

subject to Eq. (A.1)-(A.5) and (A.7).

In the planting season the household knows transacting in staple markets

in the harvest season incurs fixed and proportional costs. I solve the house-

hold’s problem recursively starting with the household’s market participation

problem in the harvest season.

Market Participation in the Harvest Season

In the harvest season the household consumes staples and non-staples

given the prices it faces, its income, and its staple production. The household

chooses its staples bought bi,t ≥ 0 and marketed mi,t ≥ 0 to maximize utility
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u
(
c(bi,t,mi,t), n(bi,t,mi,t)

)
subject to (A.2), (A.4)-(A.5), and (A.7). Optimal

market participation satisfies the problem’s first-order necessary conditions

∂u

∂c

(
c(b∗i,t,m

∗
i,t), n(b∗i,t,m

∗
i,t)
)
− ∂u
∂n

(
c(b∗i,t,m

∗
i,t), n(b∗i,t,m

∗
i,t)
)
·
[
P c+τ

]
+µb∗ = 0

(A.8)

−∂u
∂c

(
c(b∗i,t,m

∗
i,t), n(b∗i,t,m

∗
i,t)
)

+
∂u

∂n

(
c(b∗i,t,m

∗
i,t), n(b∗i,t,m

∗
i,t)
)
·
[
P c−τ

]
+µm∗ = 0

(A.9)

where µb∗ is the Lagrange multiplier for purchases and µm∗ is the Lagrange

multiplier for sales. Both of these multipliers are evaluated at the house-

hold’s optimal purchases and sales of staples given technology adoption, en-

dowments, and the subsidy level:

(
b∗i,t,m

∗
i,t

)
=
(
b∗i,t(T

f
i,t|Ti, Ai, st),m∗

i,t(T
f
i,t|Ti, Ai, st)

)
(A.10)

Eq. (A.8) and (A.9) show that household consumption and utility from

consumption vary with staple production in two ways. First, staple produc-

tion contributes to household wealth in the harvest season. Second, staple

production determines whether the household is a buyer, autarkic, or a seller

with respect to staples, which in turn determines the household’s effective

staple price.

The household’s indirect utility from consumption in the harvest season

is:
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V (T fi,t|Ti, Ai, st) ≡ u
(
c(b∗i,t,m

∗
i,t), n(b∗i,t,m

∗
i,t)
)

(A.11)

The household’s indirect utility function is non-convex over endowments due

to the fixed cost of transacting in staple output markets. The fixed cost of

buying staples causes households near the threshold of buying staples to exit

the market and instead reduce their staple consumption, thereby increasing

their marginal utility of staple consumption. The fixed cost of selling staples

causes households near the threshold of selling staples to exit the market and

instead increase their staple consumption, thereby decreasing their marginal

utility of staple consumption. Thus households on the thresholds of being

autarkic or sellers with respect to staple markets may have large incentives

to adopt technologies that increase their staple production.

Technology Adoption in the Planting Season

In the planting season the household chooses technology adoption in order

to maximize utility from consuming staples and non-staples in the harvest

season subject to its constraints. Formally the planting period problem is

max
T f
i,t≥0

V (T fi,t|Ti, Ai, st)

subject to Eq. (A.1)-(A.5), (A.7), and (A.10)-(A.11). The problem’s first-

order necessary condition for a solution is:
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∂V

∂Tf
(T f∗i,t |Ti, Ai, st)− λ∗ − ρ∗ · P f · [1− st] + µf∗ = 0 (A.12)

where λ∗ is the shadow value of land for applying the new technology in the

planting season, ρ∗ is the shadow value of liquidity in the planting season,

and µf∗ is the Lagrange multiplier for technology adoption, all evaluated

at the optimal level of technology adoption. Because the indirect utility

function is non-convex, a given household does not have a unique solution

to its technology adoption program. The fixed costs of technology adoption

and output market participation imply that each household considers not

one but six potential solutions to Eq. (A.12), one for each combination of

technology adoption and output market participation. Of these six potential

solutions, the household chooses the optimal combination that maximizes its

indirect utility. The household’s optimal technology adoption is

T f∗i,t = T f∗i,t (Ti, Ai, st)

The problem would simplify greatly if technology adoption did not incur

a fixed cost; in that case a household could adopt an initially infinitesi-

mal amount when the marginal value product of that adoption exceeds its

marginal cost given household market participation without technology adop-

tion. But with fixed costs of technology adoption, the household’s initial

adoption must exceed a minimum adoption level so that the initial technol-

ogy adoption decision also depends on its marginal effect on the household’s
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probability of being a buyer, autarkic, or a seller with respect to staple mar-

kets. Thus the household’s decision to adopt the technology depends on

both its staple surplus without technology adoption and its change in staple

surplus due to technology adoption. Given the complexity of the household

problem, I use numerical analysis to show the implications of these costs

for household technology adoption, using the model and parameter values in

Table A.1.

Appendix B. Maize Output Markets in Western Kenya

The analysis in this paper assumes households incur costs when trans-

acting in staple markets. Ideally I would estimate transaction costs based

on simultaneous purchases and sales of maize grain by farmers in the same

location. I approximate this ideal using data from the randomized controlled

trial in western Kenya.

The main months for selling maize after the harvest from the main rains

are August through October. The main months for selling maize after the

harvest from the short rains are January and February. Buying data from

2015-2016 include three recall periods. Purchase Period 1 corresponds with

the short rains harvest (February through May), Purchase Period 2 corre-

sponds with the lean season between harvests (June through September),

and Purchase Period 3 corresponds with the harvest season from the main

rains (October through January).

Fig. A.1 plots maize grain unit values as village means from December
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Table A.1: Parameter values for the numerical analysis (monetary values in 2015 Kenyan
shillings, with ˜100 Kenyan shillings per US dollar)

Parameter Symbol Value
Utility function u(c, n) 1

1−R · [c
γ · n]1−R

- Consumption share parametera,b γ 0.21
- Relative risk aversionc R 2.66
Yield from land endowmenta x 313.00
Yield gain parametera

- Low α 269.00
- High α 469.00
Fixed adoption cost F f 3, 165.60
Technology price P f 10, 800.00
Subsidy rate st 0.00
Interest rate of return r 0.00
Staple pricea,d P c 28.00
Fixed transaction coste

- Selling Fm 18, 801.09
- Buying F b 3, 165.60
Proportional transaction costa,f τ 2.60

aCalculated from my own data.
bBased on a staple budget share of γ/[1 + γ] = 0.17 (compared with 0.60 for Park
(2006)).
cI derive the coefficient of relative risk aversion with respect to non-staple consumption
R = [RY + γ]/[1 + γ] where RY ≡ −Y · (∂2V/∂Y 2)/(∂V/∂Y ) = 3 is relative risk aversion
with respect to income that is consistent with values in the literature (Barrett, 1996,
Park, 2006). The functional form for utility implies a constant coefficient of relative risk
aversion for staples Rc = [R− 1] · γ + 1. My derivation and small value for γ implies
relative risk aversion (R,Rc) = (2.66, 1.34) that is much less than the ad hoc values
(R,Rc) = (3, 4) from Park (2006).
dI assume the market price is the mean of mean buying and selling prices for maize in

the period with most transactions in my data (June to September).
eDerived from ad valorem equivalent fixed transaction costs for maize markets in western
Kenya estimated by Renkow et al. (2004).
fThis is half of the price wedge between buying and selling prices for maize in the period
with most transactions in my data (June to September).
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2014 through January 2016. Maize grain unit values follow two clear pat-

terns. First, buying prices are greater than selling prices, consistent with

proportional transaction costs in output markets for maize. Second, prices

fluctuate seasonally with the highest prices in June prior to the harvest sea-

son from the main rains and the lowest selling prices in August during the

harvest season from the main rains.

To estimate transaction costs and seasonal price fluctuations, I use the

following model of prices in village v in matched pair p at time period t

pricevpt =
P∑
q=1

φq1(p = q)+δbuy+
3∑
s=2

{
[λs+δsbuy]1(t = s)

}
+errorvpt (A.1)

where φq is the average selling price in matched pair q in February through

May (t = 1), δ is the average of the selling price less the buying price across

matched pairs in February through May, λs is the average of the selling price

at time t = s less the selling price at t = 1, and δs is the average of the

buying price at time t = s less the buying price at t = 1.

Estimates of Eq. (A.1) are shown in Table A.2, column (1). Time-

invariant transaction costs defined as the smallest average difference between

purchase and sales prices in a given period are approximately 1.4 Kenyan

shillings per kilogram, the price wedge from October through January. The

price wedge increases to 5.2 Kenyan shillings per kilogram during the period

from June through September. This is likely because this period includes
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Figure A.1: Unit vales for maize grain. Means for village-level observations from
Dec14-Jan16 measured in Kenyan shillings per kilogram.
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the most expensive lean season purchases in June and July as well as the

cheapest sales in the harvest season in August and September, as shown in

Fig. A.1. In other words if the seasonal price trend repeated in the following

year, a household that sold at harvest and then bought in the subsequent

lean season would pay a price in the lean season that is 19% greater than the

price they received in the harvest season. Defining this difference as the total

difference between selling and buying prices and assuming symmetry implies

a total transaction cost of τ = 2.6 Kenyan shillings relative to an average

market price of 28.0 Kenyan shillings from June through September.

The analysis in this paper assumes staple prices are exogenous so that

technology adoption and staple production for an individual household are

not correlated with the output price. A violation of this assumption that

would be problematic for the empirical analysis would be if households in a

community with information about the hybrids expect prices to decline as

other households in the community adopt the hybrids.
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Table A.2: Village prices by season, market, and treatment

(1) (2)
Jun15-Sep15 -2.7*** -3.6**

(0.6) (1.4)
Oct15-Jan16 -1.1 -1.9*

(1.1) (0.9)
Purchase price 2.0** 2.1

(0.7) (1.3)
Jun15-Sep15 × Purchase price 3.2*** 4.2**

(0.5) (1.6)
Oct15-Jan16 × Purchase price -0.6 0.2

(1.4) (1.1)
Treatment 0.8

(1.6)
Jun15-Sep15 × Treatment 1.7

(2.4)
Oct15-Jan16 × Treatment 1.5

(1.2)
Purchase price × Treatment -0.3

(2.5)
Jun15-Sep15 × Purchase price × Treatment -1.9

(3.5)
Oct15-Jan16 × Purchase price × Treatment -1.4

(2.6)
Reference sales price 28.1 27.7
Strata controls Yes Yes

228 village-season-market observations (24 dropped with no transactions).

Dependent variable is maize grain price in Kenyan shillings per kilogram.

Standard errors clustered by pair (Significance: *=10%, **=5%, ***=1%).
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To test whether community assignment to receive information about the

hybrids affects prices, I estimate

pricevpt =
P∑
q=1

φ0
q1(p = q) + δ0buy +

3∑
s=2

{
[λ0s + δ0sbuy]1(t = s)

}
+ (A.2)

+
[
φ1 + δ1buy +

3∑
s=2

{
[λ1s + δ1sbuy]1(t = s)

}]
dv + errorvpt

where dv = 1 for households in the seed treatment communities (0 other-

wise). Parameters with the superscript 0 have the same interpretation as

in Eq. (A.1) for the communities without access to the hybrids (dv = 0).

A parameter with the superscript 1 is the additive effect of being assigned

assess to the hybrids (dv = 1).

Estimates of Eq. (A.2) are shown in Table A.2, column (2). Treatment

does not decrease average sale prices; instead, sales prices are on average

higher in treatment communities over the course of the year. Purchase prices

are virtually no different between treatment and control communities over

the course of the year.

In conclusion, buying and selling prices for maize in western Kenya are

significantly different. 27% (1.4/5.2) of the difference can be attributed to

time-invariant transaction costs, while the remaining 73% can be attributed

to seasonal fluctuations in buying and selling prices. Communities assigned to
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receive information about the hybrid maize varieties through the randomized

control trial did not have economically meaningful differences in buying or

selling prices from communities without access to the hybrids. Thus the the

market conditions in the empirical setting approximate the assumptions of

the theoretical model.

Appendix C. Targeting and Designing Input Subsidies

I study an agricultural input subsidy program with targeting by household

land wealth and design by subsidy level. In the notation of the household

problem, the policymaker targets households with a minimum land wealth

T 0 and maximum land wealth T 1 from the joint probability distribution for

endowments φ ≡ φ(Ti, Ai). Program design is based on the subsidy level s1.

Costs of the program come from subsidizing inputs:

C(T 0, T 1, s1|φ) ≡ s1 ·
T 1∫
T 0

∫
A

P f · T f∗i,1 (Ti, Ai, s1)φdAidTi

Benefits of the program come from input investment in the season after

the subsidy program. Aggregate benefits are

B(T 0, T 1, s1|φ) ≡ w ·
T 1∫
T 0

∫
A

P f · T f∗i,2 (Ti, Ai, s1)φdAidTi

where w is the policymaker’s benefit from the outcome of interest; in the
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numerical analysis I make the simplifying assumption w = 1.9

Finally, the policymaker chooses program targeting and design to maxi-

mize welfare as defined by the difference between benefits and costs:10

max
T 0,T 1,s1

W (T 0, T 1, s1|φ) ≡ B(T 0, T 1, s1|φ)− C(T 0, T 1, s1|φ)

The welfare function is not necessarily convex over the choice variables due

to fixed costs of technology adoption and output market participation in the

household problem. Therefore I use numerical analysis to solve the policy-

maker’s targeting and design problem.

9w can be scaled to include single season benefits as well as persistent effects in subse-
quent seasons, assuming persistent effects exist.

10Alternatively, costs for the policymaker may be constrained by a program budget C̄.
Then the policymaker’s problem would be maxT 0,T 1,s1 B(T 0, T 1, s1|Fm, F b, τ, φ) subject
to C(T 0, T 1, s1|Fm, F b, τ, φ) ≤ C̄.
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